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Chapter 1
Radio Occultation Using Earth Satellites

Background and Overview

1.1 Introduction

This monograph is concerned with the phase and amplitude of an
electromagnetic wave during a radio occultation episode. This wave has passed
through an intervening medium from a distant emitter and arrives at a receiver.
The receiver measures the phase and amplitude of the wave over the duration of
the occultation episode. These measurement sequences can be used to infer
physical properties about the intervening medium.

Radio occultation refers to a sounding technique in which a radio wave
from an emitting spacecraft passes through an intervening planetary atmosphere
before arriving at the receiver. The words “occultation,” “occulted,” or
“occulting” imply that the geometry involving the emitter, the planet and its
atmosphere, and the receiver changes with time. Although an occulting or
eclipsing planet (or moon) usually is involved, the word has come in recent
times to also include non-occulting events, for example, satellite-to-satellite
sounding through the ionosphere or receiving a reflected wave from a reflecting
surface. From the perspective of the receiver for the strictly occulting case, the
emitter is seen to be either rising or setting with respect to the limb of the
occulting planet. As the radio wave from the emitter passes through the
intervening atmosphere, its velocity and direction of propagation are altered by
the refracting medium. The phase and amplitude of the wave at the receiver
consequently are altered relative to their values that would hold without the
intervening medium or the occulting planet. As time evolves, profiles of the
phase variation and the amplitude variation at the receiver are generated and
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recorded by the receiver. These profiles provide information about the
refractive properties of the intervening medium.

In seismology, an array of seismometers spread over some geographical
extent is used to study the various types of seismic waves arriving at each
seismometer from a remote earthquake. With the array, one can measure the
differential arrival times at the different stations in the array and also the
spectral properties of the various waves. The different paths followed by these
various waves and certain physical properties of the medium through which
they pass can be inferred from these observations. In a radio occultation, it is
the kinematics of the emitter/receiver pair over the duration of an occultation
episode that provides analogous information.

1.1.1 History of the Occultation Technique

An astrometric observation in the eighteenth century measuring the times of
ingress and egress of a lunar occultation of a star was probably among the first
scientific applications of the technique. The method of lunar distances, the
common seaman’s alternative to the relatively expensive chronometer in the
eighteenth and nineteenth centuries for keeping accurate Greenwich time for
longitude determination at sea, and even for calibrating marine chronometers
over very long voyages, depended crucially on an accurate lunar ephemeris.
This in turn depended on accurate astrometric observations of the moon relative
to the background stars and a good dynamical theory for the lunar orbit. Much
later, the limb of the moon has been used as a knife-edge to obtain the
microwave diffraction pattern from certain quasars [1]. The fringe spacing and
amplitude of this diffraction pattern provide information about the angular
distribution of radiant intensity from these very compact radio sources. Also,
planetary atmospheres have been studied by analyzing stellar refraction and
scintillation effects that occur during the ingress and egress periods when the
star is occulted by the planet [2–4].

The radio occultation technique to sound planetary atmospheres using
spacecraft began almost at the dawn of the era of planetary exploration. The
first spacecraft to Mars in 1964, Mariner 4, flew along a trajectory that passed
behind Mars as viewed from Earth [5,6]. The extra carrier phase delay and
amplitude variation observed on the radio link between Mariner 4 and the
Earth-based radio telescopes as Mariner 4 passed behind Mars and emerged
from the other side provided valuable density information about its very
tenuous atmosphere and also about its ionosphere [7]. Since then a score of
experiments involving planetary missions have been undertaken to study the
atmospheres of almost all of the planets in the solar system, including several
moons and the rings of Saturn [8–12].
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1.1.2 Occultations from Earth Satellites

Sounding of the Earth’s atmosphere and ionosphere using the occultation
technique theoretically can be performed with any two cooperating satellites.
Prior to the Global Positioning System (GPS) becoming operational, a few
early radio occultation experiments from a satellite-to-satellite tracking link had
been conducted. These included the link between the Mir station and a
geostationary satellite [13] and between xx and xx [QA: pls fix] [14]. However,
this monograph focuses primarily on the carrier phase and amplitude measured
by a GPS receiver onboard a low Earth orbiting spacecraft (LEO) while
tracking the navigation signals emitted by a GPS satellite during its occultation
by the Earth’s limb [15]. GPS/MET (Global Positioning System/Meteorology),
an occultation experiment that flew on MicroLab-1 and launched in 1995, was
the first occultation experiment using the GPS [16−19]. Although experimental,
over 11,000 occultations were used from GPS/MET to recover refractivity,
density, pressure, temperature, and water vapor profiles [19]. GPS/MET
provided a definitive engineering proof-of-concept of the occultation technique,
and its data set became an experimental platform for implementing improved
tracking and data processing schemes on subsequent Earth satellites with GPS
occultation capability. GPS/MET also provided a basis for assessing the
scientific and societal value of the technique in such diverse applications as
meteorology, boundary layer studies, numerical weather prediction (NWP), and
global climate change. Since then the Challenging Minisatellite Payload
(CHAMP) (2001) [20], Satellite de Aplicaciones Cientificas-C (SAC-C)
(2001), and Gravity Recovery and Climate Experiment (GRACE) (2002)
satellites have been launched, from which radio occultation observations are
now more or less continually made [21]. These missions alone could return
nearly 1000 occultations per day. Future operational missions are planned, such
as the Constellation Observing System for Meteorology, Ionosphere and
Climate (COSMIC) configuration of occultation-dedicated LEOs to be
launched in 2005 [22−24]. This system will provide near-real-time sounding
information from about 4000 globally distributed occultations per day, which
will be assimilated into NWP programs. Also, other global navigation satellite
systems (GNSSs), such as the Russian Global Navigation Satellite System
(GLONASS), and future systems, such as the planned European system,
Galileo, will broaden the opportunities for dedicated satellite-to-satellite
occultation missions [25,26].

Figure 1-1 depicts in exaggerated form a typical occultation scenario
involving a LEO and the GPS satellite constellation. For a setting occultation,
the about-to-be occulted GPS satellite will be seen from the LEO to be setting
with respect to the limb of the Earth. The duration of a typical analyzed
occultation through the neutral atmosphere (from roughly 100-km altitude to
sea level) is less than 100 s. A ray from this GPS satellite passes through the
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upper layers of the Earth’s atmosphere at a near-horizontal rate of descent,
skimming a deepest layer at its tangency point. A ray in this context may be
defined by the normal to the cophasal surface of the carrier wave emitted by the
GPS satellite. The ray then begins its near-horizontal rate of ascent through the
upper layers, exits the atmosphere, and continues on to the LEO. The maximum
total refractive bending of the ray is very small, about 1 deg from dry air.
Additional refraction from water vapor, especially for tangency points in the
lower troposphere, can double or triple that bending angle. A small bending-
angle profile is a hallmark of a “thin” atmosphere. The index of refraction of
dry air at microwave frequencies is about the same for light. At sunset the
apparent sun for an observer on the ground is refracted through its own
diameter, about 1/2 deg. The secular trend in the refractive gradient of dry air
with altitude (which is near-exponential) is evident in the oblate shape of the
apparent sun as its lower limb touches the horizon. Rays from the bottom limb
usually are bent more than rays from the top limb. The fractured shape of the
solar disk at some sunsets is caused by abrupt departures of the refractivity
profile at low altitudes from the secular trend.

The ray arriving at the LEO from the occulted GPS satellite may not be
unique, and indeed may not even exist in a geometric optics context. But for
our purpose, we assume in Figure 1-1 that it does exist and that it is unique at
the epoch of the observation. The inclination of the ray to the local geopotential
surface is very slight; at 100 km from the tangency point it is about 1 deg in dry
air, increasing linearly with ray path distance from the tangency point. At
400 km from the tangency point, the ray is about 10 km higher in altitude.
Because of the near-exponential decrease in dry air density with height, it
follows that most of the information about the atmosphere at a given epoch is

Referencing GPS

Bending Angle

Occulting GPS

CHAMP

Fig. 1-1.  Occultation scenario for a low Earth orbiter.  From [91].
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contained in a relatively narrow section of the ray about its tangency point, a
few hundred kilometers in length [27].

As time evolves, the tangency point of the ray arriving at the LEO drifts
deeper on average into the atmosphere for a setting occultation. Typically for
the occultations selected for analysis, the initial cross-track angle of descent of
the tangency point relative to the local vertical is less than 30 deg. The excess
phase delay observed at the LEO, which is simply the extra phase induced by
the refracting medium, will continue to increase on average over the course of
the occultation because of the increasing air density with depth. This continues
until the tangency point of the ray nears or contacts the planetary surface. The
total excess delay can exceed 2 km with refractive bending angles up to 4 deg
near the surface when water vapor is in abundance and the vertical gradient of
its density is large. Defocusing and multipath, which tend to become strong in
the lower troposphere, may reduce the signal amplitude to below a detection
threshold before the ray contacts the surface, terminating the occultation
episode several seconds or sometimes tens of seconds prematurely. However,
sometimes the signal returns several seconds later, and sometimes in very
smooth refractivity conditions even a knife-edge diffraction pattern from the
limb or interference fringes from an ocean reflection are observed in the phase
and amplitude before the direct signal from the GPS satellite is completely
eclipsed [28,29]. On average, over the entire globe 80 percent of the CHAMP
occultations reach to within 1 km of the surface, and 60 percent reach to within
1/2 km [21]. These encouraging statistics should improve in the future as new
signal-tracking algorithms are implemented in the GPS receivers onboard the
LEOs.

Figure 1-2 shows results from an early occultation from the GPS/MET
experiment [18]. Here the excess phase delay of the L1 carrier in meters and its
time derivative, excess Doppler in hertz, are shown over the last 90 seconds of
the occultation. The lower abscissa shows coordinated Universal time (UTC),
and its scale is linear. The upper abscissa shows the altitude of the ray path
tangency point, and its scale is non-linear. The refractive gradient of the
atmosphere increases markedly with depth, which effectively slows the average
rate of descent of the tangency point because the refractive bending angle of the
ray increases on average with depth. Therefore, the LEO must travel
increasingly farther along its orbit to intercept these progressively deeper
penetrating and more refracted rays. Near the Earth’s surface, the average rate
of descent of the tangency point typically is an order of magnitude smaller than
it is in the upper atmosphere.

Figure 1-3 shows the amplitude of the L1 carrier for the same occultation
[18]. The ordinate is the signal-to-noise ratio (SNR) in voltage, SNRV , that
would apply if the individual L1 carrier amplitude measurements were
averaged over 1 s. The actual sample rate in this figure is 50 Hz. The averaging
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Fig. 1-2.  Profile of excess Doppler and phase for a particular occultation
of GPS PRN no. 28 observed by the GPS/MET experiment on MicroLab-1
on April 25, 1995, near Pago Pago.  Redrawn from [18].
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time is 20 ms. Therefore, the thermal noise ( ~ 1 / SNRV ) for the points in this

figure is 50  larger than the SNRV  values would imply. This figure clearly
shows the secular defocusing caused by the increasing refractive gradient with
depth. The refractive gradient disperses the directions of progressively deeper
rays after exiting the atmosphere; the gradient effectively “de-collimates” the
rays, thereby diluting their power at the LEO by spreading it over a larger area.
The ratio of a small “collimated” area proportional to ∆a , shown in Fig. 1-4(a),
to the resulting de-collimated area proportional to ∆σ  at the LEO is the
defocusing factor. Appendix A derives a simple form for this factor:

∆
∆

a
D

d

daσ
ζ α= = −





−
1

1

(1.1-1)

where D is effectively the distance of the LEO from the Earth’s limb and
d daα /  is the radial gradient of the refractive bending angle α . Figure 1-4(b)
shows a relatively mild multipath scenario, including a shadow zone where
d daα /  is temporarily larger. Both the shadow zone and the interference from
multipath waves cause the variability in SNR. The secular trend of SNRV  in

Figure 1-3 is effectively given by ζ1 2/ ( )SNRV o , where ζ1 2/  is the defocusing
from air and ( )SNRV o  is the voltage SNR of the GPS signal that would be
received at the LEO without the planet and its intervening atmosphere, the so-
called “free-space” value. In addition to secular defocusing effects, this figure
shows the strong transients in signal amplitude as the point of tangency of the
ray passes through certain narrowly defined horizontal layers of the lower
ionosphere and when it crosses the tropopause. These transients signal the
presence of multipath-induced interference between different rays arriving
concurrently at the LEO from different levels in the ionosphere and
atmosphere. As the tangency point of the main ray cuts further down through
successive layers of the atmosphere and into the middle and lower troposphere,
the prevailing interference evident in this figure likely is induced by variable
water vapor concentrations.

These transients observed in phase and amplitude raise a number of issues,
some of which have been better dealt with than others. Significant progress on
dealing with multipath has been made using back propagation and spectral
techniques. Deep troughs in amplitude, shadow zones, and super-refractivity
episodes, as well as caustics, are difficult for ray theory. How well these
techniques work when the validity of ray theory itself is being strained is still to
be established. The low SNR associated with many of these transients also
makes it difficult to maintain connection in the LEO-observed phase
measurements across them. We return to these topics later.
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1.1.3 The Global Positioning System

The GPS is operated by the U.S. Air Force (USAF). A system description
of the GPS and the signal structure of its broadcast navigation signals are found
in [30,31] and in many internet web sites. It suffices here to note a few details.

The GPS constellation is comprised of 24 satellites plus some on-orbit
spares, more or less globally distributed up to 55-deg latitude. Their orbits are
near-circular with a semi-major axis of about 4.1 Earth radii and with an
inclination to the equator of 55 deg. A GPS satellite will be observed from a
LEO to rise or set with respect to the Earth’s limb on average once per 2 to 3
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Fig. 1-4.  Dispersive bending from the refractive gradient for an occultation observed from
a LEO:  (a) an ordered set of rays from an increasing refractive gradient with depth; no
multipath, and (b) a non-monotonic refractive gradient results in a shadow zone and
multipath.
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minutes, or at a rate of several hundred per day. The geographical distribution
of the occultation tangency points is more or less global, but the actual
distribution depends somewhat on the inclination of the LEO orbit plane and its
altitude. For example, a LEO in a polar orbit returns fewer tangency points in
the equatorial zone; fewer occulted GPS satellites in polar directions are viewed
from that LEO because the GPS orbit inclination is only 55 deg. Figure 1-5
shows the global distribution of tangency points obtained over almost one
month in 2001 for analyzed occultations from the CHAMP satellite. The lower
density of points in the equatorial zone reveals CHAMP’s near-polar orbital
inclination. The geographical distribution also reveals vague clustering and
striations resulting from commensurabilities between the satellite orbit periods.
On roughly one-third of these occultations, a reflected ray from the Earth’s
surface also was detected [29].

The waveforms of the navigation signals broadcast by a GPS satellite are
directional; they bathe the entire Earth with essentially full power. The 3-dB
point of their radiant power distribution lobe is about 1400 km above the
Earth’s surface. Thus, a GPS receiver onboard a LEO, with an orbit radius
typically well below this 3-dB threshold altitude, achieves about the same
performance as a receiver on the ground.
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Fig. 1-5.  Geographical distribution of nearly 4000 occultations obtained 

from CHAMP between May 14 and June 10, 2001.  Redrawn from [29].
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Each GPS satellite continuously broadcasts a set of square-wave codes by
coherently modulating the phase of the carrier of the transmitted radio signal.
These codes, which are unique to the broadcasting satellite, are pseudorandom
and mutually orthogonal. They are used for ranging and for transmitting
almanac and timing information. The mutual orthogonality property of the
codes enables the receiver by cross-correlation techniques to isolate the
received signals broadcast by a given satellite from all others, and to process in
parallel the signals from all satellites in view of the receiver. The GPS satellites
broadcast ranging codes on a pair of phase coherent L-band carriers, the L1
carrier at a frequency of 1575.4 MHz and L2 at 1227.6 MHz. These include an
encrypted precision (P) code with a chip rate of 10.23 MHz on both carriers and
the clear access or coarse acquisition (C/A) code at 1.023 MHz on the L1
carrier. The dual carriers are needed primarily to eliminate (or determine) the
refraction effect from the ionosphere. For a microwave in the ionosphere, the
refractivity is very nearly proportional to the local electron density and
inversely proportional to the square of the carrier frequency. Therefore, the
range and phase information received separately from the two carriers can be
applied in concert to nearly completely decouple the ionospheric refraction
effect by using this dispersive property of the ionospheric plasma. Newer
versions of the GPS satellites planned for launch this decade will have an
additional carrier at 1176.45 MHz (L5) and the C/A code also on L2. This will
significantly improve receiver tracking operations using clear access ranging
codes and increase the accuracy of the ionosphere calibration.

The signal structure of the ranging codes on a GPS signal is designed for
near-real-time point positioning. By concurrently tracking four or more GPS
satellites in diverse directions, the ranging code measurements can yield within
a few seconds absolute point positions with an accuracy of roughly 10 m, and
also one’s time relative to the GPS clocks. One can obtain near-real-time
relative positions (by concurrent tracking with two or more GPS receivers) with
sub-meter or even sub-decimeter accuracy.

For occultation applications, however, one needs not the ranging
information, but only very accurate measurements of the phase and amplitude
of the L1 and L2 carriers, which are by-products of the range code tracking. For
occultation applications, we may consider the radio signals arriving at a LEO
from a GPS satellite as being a pair of spherical monochromatic waves from a
distant point source at frequencies of 1575 MHz and 1228 MHz, respectively,
plus Doppler shifts from kinematics and refraction of up to a few tens of
kilohertz. Therefore, a high-performance GPS receiver used for space geodetic
applications with millimeter-level accuracy requirements is a natural choice for
occultation applications because it is designed to measure the phase of each
carrier with sub-millimeter accuracy. Chapter 6 discusses certain additional
aspects of such a space-rated receiver adapted for operations onboard a LEO.
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1.1.4 Timing

A key factor for an accurate phase delay measurement is the epoch of the
measurement. The measured phase at the receiver depends on the true phase
accumulation between the emitter and the receiver, and the difference between
the clock epochs of the emitter and receiver. Knowing the offset in time
between the two clocks at a given instant is essential. More precisely, knowing
the variability of this offset with time is essential. A constant offset is of no
theoretical consequence (but it can be an operational problem) because the
refraction information in the phase measurements is contained in their change
with time. Each GPS satellite carries onboard up to four very precise cesium
and/or rubidium frequency standards for controlling time and time intervals.

In 1999, the U.S. national policy was modified regarding certain
operational aspects of the GPS. This change of policy led to the discontinuation
of Selective Availability (SA) in May 2000, which had limited the accuracy of
near-real-time point positioning to potential adversaries and to civilian users
without access to decryption capability. By the late 1990s, SA became
increasingly viewed as a cost and productivity issue for many GPS applications,
military and civilian. As new technology and alternate means became available
to the Department of Defense (DoD) for limiting access to the GPS, it became
clear that, even though continuing SA provided a marginal defense benefit, it
incurred an economic liability. SA deliberately degrades the near-real-time
point-positioning accuracy of the GPS by at least an order of magnitude by
causing the clock epoch errors in the GPS satellites to pseudo-randomly
wander, nominally by the light-time equivalent of roughly 100 m over several
minutes. Although the maximum deviation of the error is bounded and it can be
averaged down substantially over 10 minutes or more, the short-term variability
of SA poses a significant problem for clock epoch interpolation. SA dithers the
onboard GPS master clock oscillator frequency at 10.23 MHz, which is derived
from the atomic frequency standards and from which the chip rates of the codes
and the frequencies of the L1 (154 10 23× . ) and L2 (120 10 23× . ) carriers are
generated. The clock epochs depend on the integral over time of the oscillator
frequency. The magnitude of the SA dithering has several possible levels of
severity, which were set by certain alert or defense conditions. Over the years
prior to 2000, SA had been set at a relatively low level but not at zero. Today
SA is set to zero, but it has not been eliminated.

For carrier phase applications requiring high accuracy with SA turned on,
multiple ground stations concurrently tracking all the GPS satellites in view at a
relatively high sample rate of 1 Hz were needed [32,33]. This high-rate tracking
was required to limit interpolation and/or extrapolation errors in rendering
measured phases from different GPS satellites to a common epoch. Using these
tracking data and applying a “double-differencing” or equivalent scheme
among the tracked phase measurements referenced to common transmit epochs,
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one can eliminate clock offset errors among the GPS satellites [34]. With these
differencing operations, one incurs a penalty in increased effective thermal
noise in the phase measurements, which becomes a concern in threshold
situations where thermal noise becomes a limiting accuracy factor.

With SA off, the full inherent accuracy of the atomic frequency standards
on the GPS satellites (with an effective 10-s frequency stability of a few parts in
1012) can be realized with less costly ground tracking operations [35] and with
more leisurely sample rates of 0.1 to 0.03 Hz. The interpolation error in the
measured phase change over 10 s from GPS clock instability (with SA off)
usually can be kept to well below 1 mm.

In addition to the GPS clock errors, the clock error in the LEO receiver also
must be eliminated. However, the LEO usually carries an inferior frequency
standard, which requires another strategy for eliminating this error source. This
is depicted in Fig. 1-1, which shows the GPS receiver onboard the LEO
observing the setting GPS satellite and simultaneously a second GPS satellite
clear of any intervening medium, a so-called “clock” or reference satellite. (We
assume that the dual-frequency phase measurements eliminate phase effects
from the ionosphere.) Differencing the phase measurements from concurrent
tracking of these two (now synchronized) GPS satellites at the same reception
epoch eliminates the LEO clock error. The cost of this strategy in measurement
precision is essentially a 2  increase in data noise, usually not a significant
limitation except in threshold detection situations.

1.1.5 Ephemerides

For occultation applications, the knowledge error in the relative velocity
between satellites must be controlled to a few tenths of a millimeter per second
over the roughly 100-s duration of an occultation episode for the neutral
atmosphere. This translates into a precision orbit determination (POD)
requirement on the LEO of about 30 cm in accuracy, readily achievable these
days with a GPS space geodetic receiver onboard. For the GPS constellation,
the orbit information for each GPS satellite is included in its navigational signal
and is maintained and operated by the USAF, usually with an accuracy of a few
meters, or to a few hundred parts per billion. But for many scientific
applications of the GPS, particularly space geodetic applications, one needs an
accuracy of at most a few parts per billion. Pursuant to this goal, the
International GPS Service (IGS) was inaugurated under the auspices of the
International Union of Geodesy and Geophysics (IUGG) about a decade ago.
The IGS consists of a globally distributed network of over 350 GPS ground
tracking stations operated by almost as many different organizations, several
communication and data information centers, data analysis centers, and a
central bureau for oversight and user interfacing [36,37]. The IGS is comprised
of over 200 organizations from over 80 countries collaborating on maintaining
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and operating its various system elements. The scientific products from the IGS
include very accurate and reliable ephemerides for the GPS satellites accurate
to about 1 decimeter, plus a realization of a terrestrial reference frame for
ground-based GPS receivers accurate to 1 to 2 parts per billion. These IGS-
provided accuracies exceed the requirements for occultation applications.

1.2 Information Content in GPS Occultation
Observations

A radio occultation observation profile consists of sequences of amplitude
and phase measurements of the L1 and L2 carriers obtained by the LEO
receiver over the course of an occultation episode. For the neutral atmosphere, a
typical occultation contains a few thousand data points, depending on the
sample rate. The measurement error on each point is statistically independent.
Clock epoch errors in the transmitter and receiver have been removed using the
differential tracking techniques described earlier. Using the POD information
about the LEO and the GPS satellites, one can accurately calculate the phase
accumulation from satellite kinematics. Subtracting this from the phase
measurement leaves as a remainder the excess phase from refraction. Thus, the
information content about the refracting medium is contained in the amplitude
and excess phase measurement sequences, such as those shown in Figs. 1-2 and
1-3.

1.2.1 Connected Phase

An important aspect of the excess phase measurement sequence is its
connectedness. To maintain an accurate phase profile over time, successive
phase measurements must (or at least should) be connected, which means that
the integer number of cycles accumulated between successive measurement
epochs must be exactly accounted for in addition to the fractional cycle
determinations made by the receiver at each epoch. In benign signal conditions,
the receiver itself can produce connected phase measurements using an internal
phase model based on previous phase measurements to extrapolate forward to
the next measurement epoch. But in adverse conditions, the raw measurements
must be supplemented with the application of more realistic models of the
excess phase between epochs. Based on statistical studies from actual
occultation profiles, the uncertainty in empirical excess Doppler models for the
Earth’s atmosphere is about 10 Hz, but with some outliers, which tend to
become exacerbated deeper in the moist lower troposphere [34]. Thus, the
maximum uncertainty in accumulated cycles between measurement epochs
usually is about 10∆t , where ∆t  is the separation time between successive
epochs. For ∆t = 0 02.  s, the uncertainty in the integer cycle count usually is 0.2
or less. Fixing cycle breaks can be a significant off-line data-editing task, and
sometimes flags are required to denote unfixable cycle breaks.
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1.2.2 Sample Rate Versus Vertical Resolution

The canonical sample rate for the phase and amplitude measurements is
50 Hz, which is convenient for the receiver because that is the chip rate of the
GPS header code. This is another phase-modulating, very low-rate, square-
wave code on the L1 and L2 carriers that carries almanac, timing, health, and
other information for the tracked satellite. The individual phase and amplitude
samples can be averaged and reported at a coarser rate to reduce thermal noise
effects, i.e., to increase the SNR, but at a cost of potentially poorer vertical
resolution in the refracting medium. The average vertical velocity of a ray path
tangency point is 2 to 3 km/s in the upper atmosphere and an order of
magnitude smaller in the lower troposphere, where the refractive gradient is
much stronger, and even slower where very large refractive gradients from
water vapor occur. Thus, averaging the measurements over a time span broader
than where thermal noise is no longer the limiting error source will further limit
the vertical resolution with little benefit in measurement accuracy.

Resolution topics, such as the first Fresnel zone, and related topics are
discussed further in Chapter 2 and Appendix A. The first Fresnel zone defines
the resolution perpendicular to the ray path of a single occultation observation,
much like the Airy disk provides a resolution threshold for a circular lens in an
optical instrument. As with the Airy disk, the rays passing through this zone are
more or less in phase and interfere “constructively”; rays outside this zone
interfere destructively. In a refracting medium, the first Fresnel zone is
elliptically shaped. The vertical radius is given by

F = λ ζD | | (1.2-1)

where λ  is the wavelength of the GPS carrier, about 20 cm; D is the limb
distance of the LEO, roughly 3000 km; and ζ  is the defocusing factor. The
vertical width of the first Fresnel zone is on average about 1.5 km in the upper
atmosphere and roughly 1/2 km in the lower troposphere from dry air alone.
But near the Earth’s surface, it can be an order of magnitude smaller when
strong refractive gradients from water vapor are present. It suffices here to note
that the wave properties of the GPS signal, phase, and amplitude can be used
with a sequence of observations to achieve a vertical resolution that is a small
fraction of the width of the local first Fresnel zone, perhaps as small as
10 percent. A discussion of data-smoothing strategies involving the trade-off
between resolution and measurement accuracy can be found in [34].

1.2.3 Inverting Radio Occultation Data

Although a wave-theoretic approach to recovering the refraction properties
of the atmosphere is the principal theme of this monograph, it often is more
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convenient and useful to cast propagation processes in terms of geometric
optics. The following discussion is set in a ray-theoretic context.

The radio occultation profiles of phase and amplitude are analyzed, broadly
speaking, in either a stand-alone mode or in an assimilation mode. In the stand-
alone mode, the observation sequences are used to determine a profile for the
index of refraction n( )r  from some sort of inversion process without
preponderant reliance on a priori information. Usually some kind of symmetry
or stratification geometry must be invoked for the medium to unambiguously
determine n( )r . Effectively, the number of degrees of freedom in defining n( )r
must be no more than the number of independent observations in an occultation
profile in order to achieve an unambiguous determination without using a priori
information. For the Earth, local spherical symmetry that accounts for the Earth
flattening usually is assumed. Local inhomogeneity in the refractivity along an
equipotential surface usually is a small error source for the middle troposphere
and higher, but water-vapor-induced horizontal gradients in refractivity near sea
level can become a significant error source [38].

Figure 1-4 shows a schematic of one “onion layer” approach. Within each
layer, the gradient of the index of refraction is assumed constant. Thus, we have
a sequence of unknown parameters, ′ ′ ⋅ ⋅ ⋅ ′n n nM1 2, , , , to be determined from M  or
more observations. At a specific epoch within the occultation episode, the ray
traverses the atmosphere down to a minimum depth, the kth  layer, but no
deeper. Therefore, the observations for this ray will depend only on the
k parameters ′ ⋅ ⋅ ⋅ ′n nk1, , . If an unambiguous relationship holds between the
observation at a given epoch and the ray—and this is a big if—then it is
straightforward to form a linearized system of equations involving a triangular
information matrix relating the observation sequence to these refraction
parameters. The schematic in Fig. 1-4(a) depicts (with exaggerated bending) an
ordered set of rays, i.e., no multipath, with a one-to-one relationship between
the ray arriving at the LEO and the value of a , the impact parameter of the ray.
With each successive measurement epoch in this figure, the ray at its tangency
point passes through a new layer that is lower in altitude and that was not
“sounded” before. In Fig. 1-4(b), we have multipath for some periods when
more than one ray arrives at the LEO at the same time; the impact parameter of
each ray can be moving either up or down with time, depending on the type of
ray. Therefore, an analysis scheme must first be applied to the observations to
discriminate among concurrently arriving rays.

In the linearized version relating observations to refraction parameters, an
observation at a given epoch is the actual observation minus the predicted
observation based on an initial estimate for parameter set ′ ′ ⋅ ⋅ ⋅ ′ˆ , ˆ , , ˆn n nM1 2 , and
based on a provisional ray path passing through the medium that follows
Snell’s law. Inversion of this information matrix, or inverting a weighted least-
squares matrix version if over-determined, yields a determination of the
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corrections ∆ ∆ ∆′ ′ ⋅⋅⋅ ′ˆ , ˆ , , ˆn n nM1 2 . One then updates ′ ′ ⋅ ⋅ ⋅ ′ˆ , ˆ , , ˆn n nM1 2  by adding the
corrections and generates a new ray path, forms new observation differences,
and iterates until convergence is achieved. Assuming that n n0 01 0= ′ =, ,  one
can integrate this converged sequence ′ ′ ⋅ ⋅ ⋅ ′ˆ , ˆ , , ˆn n nM1 2  downward to obtain a
recovered profile ˆ( )n r  for the index of refraction. As a practical matter, at very
high altitudes, above 50 to 60 km, the noise in the occultation observable from
measurement error or ionospheric calibration error becomes larger than the
signal from the atmosphere. In these high altitudes, to initiate the downward
integration process, one can statistically combine in a maximum-likelihood
sense the noisy occultation observable with an a priori value furnished by a
model atmosphere, along with the appropriate covariance matrices [39].
Because refractivity varies approximately exponentially with altitude at these
heights, an error in this matching and handing-over process (from strong
reliance on a priori information at higher altitudes to strong reliance on the data
at lower altitudes) is damped out exponentially with decreasing altitude and is
nearly gone within 2 scale heights.

When spherical symmetry applies and only a single ray arrives at the LEO
over time, or when multiple rays can be discriminated according to their excess
Doppler signature, then both the bending-angle and impact parameter values α
and a  are obtained from the derived excess Doppler information for each ray.
Excess Doppler for a given ray is the time derivative of its excess phase. In this
case, the Abel integral transform [see Eq. (1.2-5)] can be applied [40,41]. This
integral transform directly recovers without iteration the profile ˆ( )n r  from the
observed bending-angle and impact parameter sequences for each evolving ray
arriving at the LEO. At very high altitudes where the atmospheric signal is
weak, the same kind of statistical hand-over using predicted excess Doppler
from a model is still used to initiate the integral downward.

The accuracy of the recovery of the index of refraction can be determined
theoretically based on an assessment of the error sources within the occultation
system. It also can be inferred from statistical comparisons with NWP model
values from, for example, the European Centre for Medium-Range Weather
Forecasts (ECMWF) [19,42]. Fractional accuracy for the refractivity recovery
of 0.1 to 1.0 percent is achievable from about 5 km up to 30 to 40 km. Here the
assumption of local spherical symmetry usually is valid and the signal from the
atmosphere is relatively strong compared to the measurement noise. But in the
lower troposphere, horizontal variations in refractivity can become a significant
error source when laminar symmetry is assumed, and tracking becomes more
difficult and the measurements are noisier. These factors can limit further
improvement with depth of the accuracy of the refractivity recovery.

If the chemical composition of the medium is known, one knows precisely
the relationship between the density of the medium and its refractivity. In this
case, one obtains the density profile ρ( )r  of the refracting medium from the
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recovered profile for n r( ) −1. Invoking hydrostatic equilibrium for the medium
in a gravity field g r( ) , one has the hydrostatic equation for the pressure
dp dr g/ = − ρ . Integrating this yields the pressure profile p r( ) . Invoking
thermodynamic equilibrium allows one to apply the ideal gas law to the
recovered density and pressure profiles to obtain the temperature profile.

For the Earth, the gaseous constituents of the neutral atmosphere affecting
the refractivity at microwave frequencies are dry air and water vapor. For an
air/water system in thermodynamic equilibrium, the Clausius–Clapeyron
equation gives the partial pressure of water vapor, which varies exponentially
with −1 / T  [43]. Reducing the temperature by 10 percent reduces the saturated
water vapor content by an order of magnitude. Below a threshold temperature
of about 250 K, it is too cold for any residual water vapor to significantly
contribute to the refractivity at L-band frequencies. The altitude corresponding
to a temperature of 250 K typically is in the range 6 to 8 km. For altitudes
above this threshold and below roughly 40 km, the potential accuracy of the
temperature recovery is less than 1 K, probably less than 0.5 K for the 10- to
25-km range [21]. For higher atmospheric temperatures at lower altitudes,
water vapor becomes an additional component in the refractivity. We speak of
the “dry delay,” which is the phase delay caused by the refractivity from air,
and the “wet delay,” which is the delay solely from water vapor. The latter
arises from the permanent electric dipole moment of the water molecule, which
is a significant contributor to the refractivity at microwave frequencies. The
problems with the wet delay generally are that the density of water vapor is
highly variable in space and time, its relative abundance or specific humidity is
uncertain, and its refractivity per mole at L-band frequencies is much larger,
about 16 to 18 times larger, than the refractivity per mole of dry air. Especially
in the lower troposphere, this variability in specific humidity results in large
refractive gradients that can double or even triple the refractive bending from
dry air alone. In the stand-alone mode, therefore, the radio occultation
technique requires ancillary information for those regions where the
temperature is above 250 K to convert the recovered refractivity profile into
unambiguous density, pressure, temperature, and specific humidity profiles. In
temperate and tropical regions where the water vapor content is a major
uncertainty, the temperature profile usually is relatively better known from
NWP models, and it is often used to aid the occultation recovery of water vapor
[19,21].

1.2.4 Assimilating Radio Occultation Data

In the assimilation mode, the occultation observable profiles are assimilated
through statistical inference processes into a global atmospheric model where
the basic meteorological quantities of the refracting medium, density, pressure,
temperature, specific humidity, cloud, aerosol and precipitation distributions,
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wind fields, and so on are defined. Therefore, the index of refraction n( )r  is
already constrained to varying degrees in space and time by a usually much
larger and more global data set in the atmospheric model. Covariance matrices
characterizing the statistical aspects of the global data set and the atmospheric
models controlling thermodynamic and dynamic processes are also part of this
global system. In contrast to the stand-alone mode, no symmetry or
stratification assumptions about the refracting medium are theoretically
required here. Moreover, the granularity of the model for the refracting medium
for numerical computation or, equivalently, the four-dimensional cell size
(three in space and one in time) is already established and controlled by the
continuity equation. Usually the number of degrees of freedom, even when
constrained by the physical equations in the model, is vastly more than found in
a typical stand-alone occultation model.

The 4-dimensional variational analysis (4DVAR) technique in NWP
programs is a prime example of the assimilation mode for using the occultation
data [44−47]. Here the occultation profiles are assimilated competitively in a
statistical treatment of the data. The radio signal from the position of the
occulted GPS satellite is propagated through this global model atmosphere with
its free parameters provisionally fixed. At each observation epoch in the
occultation sequence of M observations, the difference between an actual
observable of the GPS signal (e.g., excess phase, excess Doppler or bending
angle, signal amplitude) and its propagated value based on the provisional
parameter set is computed. This difference becomes a component of an
additional M-dimensional observation vector in the global data set. One adjusts
the free parameters of the global model to minimize a cost function
characterizing the goodness of fit of all the data weighted by their covariance
matrix inverses, including the occultation data. The efficacy of the occultation
information in this environment to modify the values of the free parameters
obviously depends on the information content in the global system and on the
assigned covariance matrices.

1.2.5 Rays and Stationarity

The Poynting vector, which defines the direction and magnitude of the
radiant power in an electromagnetic wave at a given point in terms of the cross
product of the electric and magnetic field vectors, is perpendicular to the
cophasal surface of the wave at that point. The limiting form that the Poynting
vector takes as the wavelength of the wave is shrunk to zero defines the tangent
vector of the ray in geometric optics. The second-order differential equation
that results from this limiting process gives the curvature of the ray at any point
in terms of the gradient of the refractivity there. This limiting process also gives
the amplitude of the ray based on the Poynting vector, its reflection and
transmission properties that would apply to an electromagnetic wave of very
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short wavelength, and so on. What is missing in ray theory, by definition, is
diffraction. Also, ray theory (as geometric optics is usually defined) cannot deal
adequately with caustic rays or with trapped rays in a super-refracting medium
where the curvature of a ray, if it could exist in this environment, would
temporarily be greater than the curvature of the local equipotential surface. A
caustic ray is one that first comes in contact with the envelope to a family of
rays, for example, a spectral component of a rainbow. Born and Wolf provide a
comprehensive discussion of the foundations of geometric optics following this
limiting approach in [48], which cites many references giving the historical
development of geometric optics.

The same differential equation for the ray (the Euler equation) comes from
the calculus of variations upon applying Fermat’s principle (see Appendix A).
The phase accumulation ϕ  along a path through a three-dimensional refracting
medium from point A  to point B  may be written in parametric form as

ϕ = = + +( )∫ ∫k n ds k n x y z dt
A

B

A

B
( ) ( ) ˙ ˙ ˙

/
r r 2 2 2 1 2

(1.2-2)

where k = 2π λ/  is the wave number of the wave, n( )r  is the index of
refraction at the position r x y z= + +ˆ ˆ ˆx y z , ds x y z dt= + +( ˙ ˙ ˙ ) /2 2 2 1 2  is the
incremental arc length along the path, t  is an arbitrary parameter denoting
position along the path, ( ̇) ( ) /= d dt , and the triad ( ˙, ˙, ˙)x y z  defines the slope of
the path. The path is described by the functions x t( ) , y t( ), and z t( ) , and we
now stipulate that they describe a ray path. Fermat’s principle requires that this
path integral along a ray be stationary. In other words, the phase accumulation
from the same initial point to the same end point along any other physical path
neighboring the ray path would differ from the phase accumulation along the
ray path in a second-order manner. Let the neighboring path be described by the
functions x t tx( ) ( )+ εξ , y t ty( ) ( )+ εξ , and z t tz( ) ( )+ εξ , where ε  is a small

parameter. The functions ξx t( ), ξy t( ) , and ξz t( ) are completely arbitrary other

than that they must be physical and they must satisfy the boundary conditions,
i.e., ξ ξx xt tA B( ) ( )= = 0 , etc. Then d dϕ ε/  must be zero when evaluated along
the ray, on which ε = 0 . This stationary-phase condition requires that the ray
path at every point satisfy the Euler differential equation or its integral
equivalent where a discontinuity in n( )r  occurs. Usually the stationary value of
ϕ  along a ray is a local minimum, i.e., d d2 2 0ϕ ε/ > , but not always.
Anomalous rays provide a local maximum, and caustics involve a breakdown
of the assumption of a non-zero second-order variation, which is embedded in
the foundations of geometric optics.

The calculus of variations is a powerful technique for developing basic ray
theory and many of its attributes. It may be used to develop the eikonal
equation for obtaining phase delay along a ray, the transversality condition for
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relating the change in end-point phase delay to small changes in end-point
position (including relating excess Doppler to refractive bending angle), the
Hamilton–Jacobi theory for obtaining the end-point phase delay expressed as a
field variable in terms of the end-point position variables for a family of rays,
and finally, for obtaining the canonical variable representation of a ray. We
discuss these aspects in Chapter 2 and in Appendices A and B.

The stationary-phase property of rays affects one’s strategy for processing
occultation data using ray theory, depending on one’s objective. In a sense,
stationarity is both a blessing and a curse. Regarding the latter, consider the
process of finding the ray path passing through the end points A  and B  for a
given trial index of refraction profile ˆ( )n r . One can forward propagate from A
or backward propagate from B  using Snell’s law and a ray-tracing method. By
adjusting the slope parameters of the ray at these end points, one theoretically
can converge on a complete ray path that matches the boundary conditions, if
such a ray exists. The problem is that the calculated phase delay obtained by
following this provisional path also must match the observed value ϕ  for each
observation epoch. This in turn requires adjustments in ˆ( )n r  to reach the
observed values for ϕ ; for the stand-alone mode, this would require an
inversion process such as that described earlier. But along the ray, the phase
delay is stationary with respect to small variations in the slope parameters or to
variations in any other parameter, for example, the impact parameter, that
characterizes an alternative nearby path that satisfies the boundary conditions.
There is a singularity here. In effect, the “density” of admissible paths around
the actual ray with a phase delay within the limits ( , )ϕ ϕ δϕ+ , all satisfying the
boundary conditions, becomes infinite along the actual ray where δϕ = 0 . This
singularity in path density forms the basis of Fermat’s principle. The idea is that
all physical paths in the vicinity of the actual ray have the same phase delay to
first order. Therefore, the phasor, exp( )iϕ , for each path neighboring the ray is
the same, to first order, and when the phasors from all of these possible nearby
paths are summed (Huygen’s principle) and averaged to obtain the total field at
point B , they sum constructively, reinforcing the amplitude. For paths with
larger deviations from the ray, their first-order phase variation with respect to
path deviation is not zero. Therefore, their phase delays for different paths in
their neighborhood are distributed more or less randomly over 2π  radians, and
their phasors destructively combine. No average field results from those paths
with a non-zero first-order variation, only fluctuations. This concept of
constructive reinforcement for nearby paths about a ray and destructive
reinforcement for paths away from the ray forms the basis for the idea of a ray,
the basis for Fermat’s principle, and the basis for the first Fresnel zone. It also
is the central concept in the Feynman sum-over-histories technique used in
quantum electrodynamics to calculate the quantum wave function for the
probability amplitude of a quantum event [49].
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This singularity in path density results in numerical instability when the
measured phase sequence per se is used as a criterion to reconstruct the most
probable ray path for each observational epoch. On the actual ray, d dϕ ε/ = 0 ,
where ε  is a parameter describing the departure of a trial path from the actual
ray path. By tinkering with ε , one tries to converge to the actual ray path. One
would use an iterative differential correction scheme of the linear form
δε ϕ ε δϕ= − −( / ) ˆd d 1 , where δϕ̂  is the observed value of ϕ  minus the
computed value ϕ̂  based on the provisional profile ˆ( )n r  and the provisional
path through this medium between the end points. Here one attempts to
determine iteratively the maximum-likelihood estimates of δε , ˆ( )n r , and the
path. This scheme will run into computational trouble after successive iterations
as the iterated path approaches the actual ray path because d dϕ ε/ → 0  as
ε → 0 .

1.2.6 Excess Doppler

Stationarity also brings a blessing. If one slightly changes the end-point
values of the ray, a new ray will pass through the new end points. The phase
delay along the new ray between the new end points minus the phase delay
along the old ray between the old points depends only on local conditions at the
end points, not on the path in between. This is rather remarkable considering
that the phase delay itself is computed from a path integral along a new path,
which explicitly accounts for the variability in ˆ( )n r  along the entire ray path.
This local rather than global dependency on change is a unique property of a
stationary-phase path.

Using the transversality condition, it is shown in Appendix A that the rate
of change in excess phase resulting from the satellite velocities is given by

λf n n rD = ⋅ − ⋅ −G G G L L L GLT V T V ˙ (1.2-3)

where f d dtD = ( / ) /ϕ π2  is the rate of change of the excess phase in cycles, or
excess Doppler shift of the ray, and λ  is the wavelength of the harmonic wave.
Here G denotes the position of the end point of the ray at the transmitting GPS
satellite, and L denotes the end point position at the LEO.  Also, V  is the
velocity vector of the satellite at an end point of the ray, T  is the unit tangent
vector of the ray at an end point, and ṙGL  is the radial velocity between the end
points G and L (see Fig. 1-6). POD information provides a determination of rG ,
VG , rL , and VL , and therefore ĠLr , at each observational epoch. It follows that
the excess Doppler shift for a given ray, a quantity directly obtained from the
observed excess phase profile for that ray, imposes a constraint on the unknown
unit ray path tangent vectors TG  and TL . If we assume coplanar propagation,
usually a good assumption, then T  is defined by a single deflection angle
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relative to the vector rGL  between end points G and L (see Fig. 1-6). Ray
tracing and Snell’s law provide a second constraint on these two deflection
angles. If we assume the satellites are out of the refracting medium, then
n nG L= = 1. Thus, one determines the refractive bending angle, the angle α
between TG  and TL , provided that the ray is unique. No singularity arises in use
of the excess Doppler to converge to the actual ray path from point G to
point L.

The catch is that Eq. (1.2-3) requires that the ray arriving at point L from
point G be unique. Equation (1.2-3) applies only to a single ray, not to a
composite. One must be sure a priori that the observed phase profile results
uniquely from a single ray or at least very nearly so, not from some composite
of full-fledged rays arising from multiple stationary-phase paths through the
atmosphere, all starting from point G and arriving at point L. These multipath
rays arrive concurrently at L, but each has its own unique excess Doppler
signature because their T  vectors differ. We return to this multipath issue later.

Assuming that one has recovered the bending angle without ambiguity for a
given ray, one obtains the impact parameter

a n nr= × =| | sinr T γ (1.2-4)

for that ray, which is a constant along the ray when spherical symmetry applies.
This is Bouguer’s law, essentially Snell’s law for a spherical symmetric
medium. Here γ  is the angle between the radius vector and the tangent vector
of the ray. In ray theory, the constancy of this impact parameter a  is the
analogue of the conservation of angular momentum in classical mechanics.
This is shown in Fig. 1-4. The impact parameter is related to the tangency point
( , )* *r θ  of the ray by the condition a r n r= * *( ). Then, as mentioned earlier, with
the ordered series of values for the bending-angle and impact parameter pair
( , ),  , , ,αk ka k M= ⋅⋅⋅1 2 , one can form the function α ρ α( ) = k , ρ = ak ,
k M= ⋅⋅⋅1 2, , , , and one can use the Abel transform
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to recover the refractivity profile in terms of the impact parameter a . The Abel
transform is derivable from the basic integral equation for the bending angle in
a spherical symmetric medium (see Appendix A):
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By substituting this form for α( )a  into the integral operation on the right-hand
side (RHS) of Eq. (1.2-5), one indeed recovers log ( )n a . If significant multipath
occurs within a section of the observation series, then it should be noted that
a k Mk ,  , , ,= ⋅⋅⋅1 2  will not be time-ordered during that section. But, as long as
one can successfully recover a sequence ( , )αk ka  that is ordered, then the Abel
transform can be applied.

If spherical symmetry does not apply, then some ray tracing technique
combined with the appropriate stratification model for the refractivity can be
used to recover the refractivity profile, or one can use the assimilation mode.

Note from Eq. (1.2-6) that the existence of a ray between given end points
with an impact parameter value of a  requires that ρ ≥ a  at all points along the
ray. In a super-refracting layer, d dr n rnρ / ( )= + ′ < 0 , and this condition ρ ≥ a
can be violated for a certain range of tangency points r*. Within this range, no
rays exist. Chapter 6 briefly discusses super-refractivity in a spherical shell.

1.3 Scientific Applications of GPS Occultation
Observations

We briefly review the major uses of occultation observations, which fall
broadly into the categories of meteorology, weather prediction, and global
climate change. Accuracy, resolution, and the global distribution of the GPS
occultations are key factors. Regarding accuracy, we have already noted the
accuracy of the refractivity recovery from the stand-alone mode,
0.1 to 1 percent fractional accuracy above the lower troposphere, where the
assumption of local spherical symmetry is likely to be satisfactory, and below
40 km. This translates into the same fractional accuracy range for the density
determination for temperatures below 250 K. It also implies dekameter
accuracy for a geopotential height determination of a point on a constant
pressure surface, for example, the difference in the potential for the 300-mbar
surface minus the potential of the ocean geoid, with the difference divided by
the gravity coefficient [50]. It also translates for the same altitude range into
sub-kelvin accuracy in temperature recovery.
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Regarding these accuracy figures, the caveats about the applicability of
spherical symmetry and the temperature being colder than 250 K have more to
do with the model used and the analysis approach, and less to do with the
inherent accuracy of the measurements. Good, clean phase and amplitude
measurements down to the Earth’s surface could yield 0.1-K accuracy for
temperature recovery if we knew the water vapor content and the stratification.
So, these caveats are somewhat misleading and tend to understate the inherent
strength of the occultation data if our strategy is instead to assimilate them into
a 4DVAR process.

Radio occultations bring new capabilities to the study of processes in
meteorological models. With occultation data, one can study the fine structure
of various refractive boundaries, such as the tropopause, a marine boundary,
and a sporadic E-layer in the ionosphere. Temperature and pressure recovery
from the middle troposphere through the middle stratosphere can lead to better
understanding of energy transport and exchange processes across the
tropopause and of how the atmosphere radiates dynamical energy and heat
through acoustic gravity waves. Gravity waves are quite evident in occultation-
derived temperature profiles in the stratosphere [51−54]. Phase and amplitude
measurements made down to or near the Earth’s surface provide powerful
constraints on water vapor, which is such an important greenhouse gas and so
relevant to energy transfer and balance processes in the atmosphere and to
aerosol growth and cloud formation. Occultation-derived specific humidity
distributions will provide sharper information about cyclogenesis processes,
baroclinic wave and wind field development, and so on. More detail about
many promising new capabilities is provided in [22,55].

1.3.1 Weather

The utility of occultation data when assimilated into 4DVAR programs
depends greatly on the degree of complementarity of the information content in
the occultation data set compared to the 4DVAR data set. The utility will be
highest when other data are relatively sparse or when certain physical
parameters of the 4DVAR model are less well constrained. This includes both
data-sparse geographical locations and certain locations in altitude, even in
data-rich geographical areas. Occultation profiles are in their best form for
tangency points in the upper troposphere up to the lower stratosphere. Here the
technique can provide unprecedented accuracy in density, pressure, and
temperature, and it offers very sharp (perhaps dekameter-level) vertical
resolution.

The utility of the occultation data also depends on their latency. The
ephemeral aspects of the weather force very short latency requirements. That is
why planned operational LEO occultation constellations, such as COSMIC,
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have a 2- to 3-hour latency goal: occultation data to be completely assimilated
within 3 hours of the actual occultation event.

Regarding geographical complementarity, consider again the planned
COSMIC constellation, which will return on average about 10 occultations
within a 3-hour period over a geographical area the size of the continental U.S.
Obviously, 10 occultations from southern ocean or polar locations where
weather data are sparse will have a bigger impact in weather models for those
areas than will 10 occultations obtained over the continental U.S. and southern
Canada in weather models for that area. In North America, the myriad weather
sensors and observation programs is constraining.

Nonetheless, the water vapor information provided by the radio occultation
data has a global utility. These data are powerful because they highly constrain
the water vapor uncertainty. Accurate knowledge of specific humidity
distributions, particularly in the lower troposphere, is key to more accurate
weather prediction, for example, the ongoing development of wind fields, cloud
formation, and precipitation in cyclogenesis processes. It is the water vapor
information that makes reaching the Earth’s surface with a high percentage of
the radio occultations such an important goal for operational programs [56].

Pursuing this complementarity concept further, let us see how the water
vapor information content in an occultation might fold into a 4DVAR process.
The refractivity at L-band frequencies in the neutral atmosphere is given by
[57,58]
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where p is the pressure of the moist air in mbars, pw  is the partial pressure of
the water vapor, and T  is temperature in kelvins. Here and throughout this
monograph, we use an unconventional definition for refractivity, N n= −1,
instead of the standard N n= − ×( )1 106 . Let us rewrite the refractivity equation
in terms of the molecular number densities, na  and nw , in moles / m3 , where
na  and nw  are the dry air and water vapor number densities, respectively. We
use the ideal gas law p RTx x= n , where R  is the universal gas constant. Then
Eq. (1.3-1a) becomes
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The relatively high sensitivity of the refractivity to the density of water vapor
should be noted; the value of b T( )  typically is 16 to 18. Because the mean
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molecular mass of water is 18 g/mole and dry air is 29 g/mole, the sensitivity of
the specific refractivity is even greater.

Suppose now that we have inverted the occultation data to obtain an
estimate ˆ ( )N r  of the refractivity. We could make a similar case for
complementarity using a basic occultation observable, such as excess phase,
Doppler, or amplitude. But it is easier to show using the recovered refractivity.
Assume that at some epoch during the occultation episode the tangency point of
the ray is located at a particular altitude where water vapor is a significant
factor. Suppose that the error in the recovered refractivity there, δN̂ , is a
random variable that is Gaussian distributed with a mean value of zero and a
standard deviation of σ N̂ . Then, from Eq. (1.3-1b), the probability density

distribution P N[ ˆ ]δ  for δN̂  written in terms of corresponding Gaussian errors in
n̂a  and n̂w  is given by

P N
c b c b

b
N N

[ ˆ ] exp
ˆ ˆ

ˆ ˆ

δ
πσ σ

δ δ= − +
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Thus, a contour of constant probability density in δN̂  is an ellipse with the
semi-major axis along (or nearly so) the na  axis and the semi-minor axis along
the nw  axis. The coefficient b T( )  gives the ratio of these axes. The left-hand
error ellipse, System A, in Figs. 1-7(a) and 1-7(b) gives qualitatively the
contour for a constant probability density for δN̂  from an occultation expressed
in terms of the corresponding errors, δn̂a  and δn̂w , in the statistical estimates
of na  and nw . For example, the ellipse might be the contour corresponding to

the 1− σ  values for δn̂a  and δn̂w ; in this case, the probability of finding δN̂
within the area inside of this ellipse is 40 percent.

Several comments can be made about Figs. 1-7(a) and 1-7(b). At this
altitude of the tangency point and at this observation epoch, the error ellipse
from the occultation information, System A, highly constrains the range of
probable values for n̂w  compared to the range of probable values for n̂a .
System B in Fig. 1-7(a) shows another error ellipse for δn̂a  and δn̂w  from
another information system. It is derived from a presumably higher-
dimensional covariance matrix describing the uncertainties in the recovered
values for the global parameter set in System B mapped to the same epoch and
altitude and projected into our two-dimensional ( ˆ , ˆ )δ δn na w  space. The
information in System B is statistically independent from the information in
System A. In Fig. 1-7(a), the information in System B is more or less “parallel”
with the information in System A, nearly the same strength and the same
weakness. In Fig. 1-7(b), System B is complementary to System A, more or
less orthogonal, as characterized by the crossed error ellipses; the strength in
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one system is a weakness in the other. The error ellipses for the two systems, A
and B, may or may not be of comparable scale or eccentricity, but one can
make an argument that they are often comparable. With the 2 × 2 covariance
matrices for System A and System B, one can statistically combine the
information in these two systems to obtain minimum variance estimates for na

and nw . The combined covariance matrix yields the System C minimum
variance error ellipse. In Fig. 1-7(a), the combined System C, when the
information in the two systems is comparable in accuracy, shows a roughly
1 2/  improvement in probable errors all around, but it inherits the same
strengths and weaknesses from the two systems. In the orthogonal case in
Fig. 1-7(b), System C inherits the strengths from each system and none of the
weaknesses; its error ellipse is dramatically improved. Water vapor content in
NWP models is very difficult to know accurately in place and time, and it is
generally less well-known in these models than are the total pressure and
temperature. The near-orthogonal error ellipse in Fig. 1-7(b) for System B
probably is more typical for NWP models.

In summary, in weather applications, complementarity from radio
occultations, if they are timely, comes mainly from locations with relatively
sparse meteorological data or from regions with more loosely constrained
parameters. The other major contribution to NWP from the radio occultations is
their highly constrained water vapor information, as just discussed. The long-
perceived bête noir of the radio occultation technique for the Earth—water
vapor—is in fact its strength.

1.3.2 Climate

In global climate change studies, detecting weak signatures in a noisy Earth
system environment over decadal periods and longer is a major challenge. Here,

ˆ   nw

A B C A B C

(a) (b)

ˆ    nw

ˆ     nan̂ a

Fig. 1-7.  Error elipses for independent information systems A and B, and their minimum
variance combination C:  (a) parallel information and (b) complementary information.

δ

δ δ

δ
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the stability, high accuracy, and fine vertical resolution of the GPS occultations
are key assets for use in climate studies. Except for the ionosphere, the GPS
observations are essentially calibration-free, with no instrumental biases or
calibrations that vary slowly. Even with the ionosphere, it would be a decadal
variation in the usually small refraction effects from third- and higher-order
frequency terms that could possibly “leak into” long-term observations in the
stratosphere. This seems an unlikely scenario because modeling the ionosphere
to aid the dual-frequency corrections significantly reduces errors from higher-
order terms on the recovered refractivity in the stratosphere [59,60].

In monitoring possible secular trends, one can spatially average the
recovered temperatures at a given altitude, or geopotential heights at a given
pressure, to reduce by perhaps an order of magnitude the effect of random
errors and variations. Thus, all the points lying within a specified geographical
area, say a region 500 × 500 km in size, could be lumped and then averaged
over time, weeks or months, enhancing the probability of detecting signatures
with spectral power at very long periods.

Secular variations in the geopotential height of the 300-mbar surface, for
example, can be a sensitive indicator of secular changes in the average
temperature, T , below. The sensitivity coefficient, ∂ ∂h T/ , is about 30 m/K. A
geopotential height change of 30 m at 300 mbar almost surely would be
detectable over a long series of occultation observations, especially if it were
regionally averaged, but ascertaining that it was a temperature signal rather than
some other possible physical signal would remain a challenge.

A predicted secular effect associated with the global warming scenario is a
warming troposphere but a cooling stratosphere. Therefore, monitoring
averaged changes in recovered temperature profiles across the tropopause could
be a very sensitive indicator of this warming trend. Other signatures associated
with global warming to which averaged radio occultations might be applied are
increased water vapor content and variability in the tropics, changes in the
residual water vapor in the upper troposphere, and warming in the lower
troposphere in polar regions. More examples and details on climate applications
are given in [22,26].

1.4 Problems from Multipath and Some Remedies

The main problem from multipath, other than stressing the signal-tracking
operations by the receiver, is in the ambiguity that it introduces regarding the
appropriate excess Doppler value to use for each arriving ray. We have already
noted in Fig. 1-3 the interference in amplitude from multipath rays for a
particular occultation from GPS/MET. Figures 1-8(a) through 1-8(d) from
CHAMP show similar interference in amplitude for a selected group of
occultation profiles. The de-trended phase measurements for these occultations
show similar interference. One should note from Fig. 1-8 the generally
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improved SNR on CHAMP compared with GPS/MET. The GPS antenna on
CHAMP has about 4 dB more gain, which on average yields about a factor of
two increase in free space SNRV . These profiles reveal striking and highly
transient features in signal amplitude as the ray path tangency point descends
through the atmosphere. Occultations passing through narrowly defined layers
of the ionosphere also reveal similar transients in SNR and phase as a result of
sharp gradients in electron density. Examples of passing through a sporadic
E-layer in the lower ionosphere are seen in Fig. 1-8(b) and will be found later in
Chapter 2 in Figs. 2-15 and 2-16 from GPS/MET.

A characteristic of many of these transients is their brevity, which, when
the downward velocity of the ray is considered, translates into an altitude range
that is usually narrow compared to the vertical width of the first Fresnel zone.
Moreover, deep troughs in the SNR of the received signal combined with
contiguous and abrupt flaring (and concomitant transients in phase) are often
observed. These are almost sure signs of multipath and/or shadow zones, and
even of ducting on occasion through a super-refracting layer [Fig. 1-8(a)]. In
some instances, caustic rays are evident and also diffraction fringes when the
physical refractivity feature is sharp enough and the neighboring environment is
smooth enough.

Multipath is essentially the rule in occultations, not an exception. There are
benign periods, of course, but even those usually show some small interference
or scintillation that exceeds the thermal noise; it is a matter of degree. For
example, the SNR in Fig. 1-8(c) at t = 0  predicts a 1 percent thermal noise
level 50 / SNRV( ), but the actual noise is 2 to 3 times larger. One can average

the samples down from a 50-Hz rate to a smaller rate, for example 1 Hz.
Because the typical frequency difference, ∆f , between interfering rays is
several hertz, averaging dramatically improves the multipath “noise” compared
to thermal noise. Over an averaging time ∆ ∆t f>> −( ) 1 , the amplitude of the
fringes from multipath averages down as 1 / ∆t , whereas thermal noise averages

down as ( / ) /1 1 2∆t . On the other hand, averaging can degrade the vertical
resolution potential. For a LEO, the vertical motion of the ray path tangency
point spans the vertical diameter of the local first Fresnel zone in a time interval
of ∆T ≈ −0 6 1 2. /ζ  s , where ζ  is the defocusing factor, unity at the top of the
atmosphere and usually 0.1 to 0.01 at sea level. Therefore, averaging
observations over a time interval longer than ∆T  exceeds the Fresnel limit,
which is the resolution from only a single observation. Sub-Fresnel vertical
resolution, obtained from an ensemble of observations by means analogous to
the resolution obtained from synthetic aperture radar systems, and a holy grail
for boundary studies, can be considerably hampered by time-averaging the
observations. Ultimately good SNR is the key.
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Figure 1-9 shows a phasor diagram in the complex plane containing a
snapshot at a given instant of the phasors for three interfering rays, the “main”
ray m, and the additional rays a and b. This is one of the simplest multipath
scenarios, which usually comes in odd-numbered packets, 3, 5, 7,⋅ ⋅ ⋅, except at
caustic contact points, or when a reflected ray is present. The vector sum

ˆ ( ) ( ) ( ) ( )m a bE E E Et t t t= + +  (1.4-1)

gives the observed amplitude and excess phase. The excess phase and
amplitude of the individual components are not directly observable. The
amplitudes of these rays, Em , Ea , and Eb , usually differ and they also vary

with time, but usually at a much slower rate than ˆ( )E t  can vary because of
interference. Their amplitudes are determined by their respective defocusing
factors, which usually vary relatively slowly except near a caustic contact point.
The individual excess phase of each contributing ray, ϕm , ϕa , or ϕb , depends
on its individual ray path through the medium, which is changing with time as
the ray path tangency point migrates downward or upward through the medium
as a result of the orbital motions of the satellites. Because there are about
108  wavelengths along the ray path, the phases of these rays change rapidly
with time. The relative phases, ϕ ϕa m−  and ϕ ϕb m− , vary at a rate that
depends on the size of the refractivity perturbation that caused the multipath
and on the local defocusing by smooth dry air. Typically this difference in rate
is below 10 to 15 Hz. The relative values of the amplitudes Ea  and Eb ,
compared to the amplitude of the main ray Em , determine whether we have
deep scintillation or light interference from these particular rays. Each of these
three rays has its own excess Doppler signature because the directions of their
ray path tangent vectors leaving the transmitting GPS satellite and arriving at
the LEO are different. The excess Doppler relationship given in Eq. (1.2-3) is
valid for each of these contributing rays, but not to the Doppler for ˆ ( )E t . In

ˆ

ˆ

I

R

E

E m

E b

E a

    m

Fig. 1-9.  Complex diagram showing composite amplitude E
and phase      from three multipath rays.

ϕ ϕ

ϕ̂
ˆ
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other words, d dtˆ /ϕ  does not yield per se a bending angle from Eq. (1.2-3)

because ˆ ( )E t  does not represent an actual ray, only a composite.
The interesting point about these multiple rays is that, although they arrive

at the LEO at the same time, they all have different excess Doppler values
because their tangent vectors at the LEO differ. Thus, from Eq. (1.2-3) it
follows that when we have multiple rays arriving concurrently at the LEO, they
arrive with distinct bending angles.

Figure 1-10 shows a schematic diagram for a hypothetical multipath
scenario in which up to 5 rays concurrently arrive at the LEO. The ordinate is
the excess Doppler shift for individual rays, and the abscissa is the epoch of the
observation at the LEO. For this scenario, the phase and amplitude
contributions from possibly 1, 3, or 5 rays will simultaneously be registered in
the total amplitude and phase measured at the LEO. The actual number of
contributing rays depends on the observation epoch t kk ,  , ,= ⋅⋅⋅1 2 , as shown in
Fig. 1-10(a). The measured composite phase will be an unknown combination
of the phases of the individual rays weighted by their respective amplitudes per
the vector diagram in Fig. 1-9.

1.4.1 Spectral/Holographic Techniques

What this multipath problem, described in Fig. 1-10, needs is a
transformation that converts the multi-valued time series of observations (in
Doppler or bending angle) into a single-valued series. There are several ways of
accomplishing this. One is to convert the multi-valued time series into a single-
valued spectral series, as suggested in Fig. 1-10(b). Here ω  is a spectral
variable, for example, a Fourier variable from a fast Fourier transform (FFT)
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Fig. 1-10.  Hypothetical multipath scenario for a setting occultation:  (a) the phase at
the LEO is measured at the epochs tk, k = 1,2,   , resulting in multiple Doppler contri-
butions at some epochs, and (b) the time series of observations is transformed into a
single-valued spectral series.
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that can be made proportional to or at least related in a one-to-one way to the
excess Doppler. In Fig. 1-10(b), we have converted through a Fourier transform
the time series of phase and amplitude measurements of the field, in which the
bending angle may not be a unique function of time, into a spectral series in
which the bending angle is a unique function of the spectral variable. The peak
power in the Fourier spectrum locates the excess Doppler from an individual
ray and, therefore, the bending angle per Eq. (1.2-3). This approach was applied
to the open-loop phase and amplitude measurements observed from the Earth
from the occultation of Voyager 2 by Uranus in 1986 [10]. Figure 1-11 shows
an open-loop power spectrum over time, composed of contiguous strips of 10-s
temporal width and an excess Doppler breadth of about 15 Hz.

The word “radio-holography” is often used to describe this class of
“wave/optic” analysis techniques. Radio-holographic techniques first “stop” the
phase rate of the LEO observations by subtracting a time-dependent phase
predicted from a realistic model that includes both geometric delay from
satellite kinematics and the refractive delay [62−69]. This narrows the effective
bandwidth around the spectral peak of the reference ray used in the reference
model. The variability of the Doppler shift in the model typically ranges from
several hertz to at most a few tens of hertz. Then a complex spectral algorithm,
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Fig. 1-11.  The power spectrum of the radio
signal from Voyager 2 while occulting behind
Uranus' lower troposphere in 1986. Redrawn
from [10].
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for example, an FFT, is applied to obtain the power spectrum over the relatively
narrow remaining bandwidth of the stopped phase profile within a prescribed
time window or time width. Maximum power yields the Doppler tone, or tones
when atmospheric multipath is present. From Eq. (1.2-3), one then obtains the
bending angle for each tone. The temporal evolution of the tones is obtained by
sliding the sample time window used in the FFT. Under the assumption of
spherical symmetry, the one-to-one relationship between the recovered excess
Doppler/bending angle and the impact parameter of the ray obtained from
Bouguer’s law yields the value of the impact parameter. From this approach,
one recovers a unique bending-angle profile versus impact parameter for a
given ray member, but corrupted as always by measurement noise and
modeling errors. From this point, the Abel transform yields the refractivity
profile versus impact parameter, and then from the relationship a r n r= * *( ) at a
tangency point, one obtains n r( ) .

Figure 1-12 shows two snapshots of the bending-angle spectra recovered
from a GPS/MET occultation over the Sea of Okhotsk in the Russian Far East
using a holographic technique [29,54,67,68]. Figure 1-12(a) shows a narrow
(half-power width ~20 µrad) single tone in the mesosphere at 56-km altitude.
This translates into a vertical resolution of about 60 m. Figure 1-12(b) shows
the complex tone structure about 1/2 minute later for the same occultation. Here
the tangency point of the direct ray lies deep in the lower troposphere between
1 and 2 km above sea level. This figure also includes a weaker tone
corresponding to a near-specular reflection from the ocean.

1.4.2 Back Propagation

A second, fundamentally different approach to achieving an equivalent
single-valued time series and to improving resolution is to map the field
measurements recorded by the LEO onto another surface much closer to the
refracting medium. This technique is based on the Helmholtz–Kirchoff integral
theorem from classical electrodynamics. This integral theorem expresses the
amplitude and phase of an electromagnetic wave at a given point in terms of an
integral involving the distribution of the amplitude and phase of the wave over
an enclosing surface. It explicitly accounts for the retardation time between any
point on the radiating surface and the interior point, that is, the travel time
between these points resulting from the finite speed of light. The theorem is
valid when the scale of the radiating surface is very much larger than the
wavelength of the wave. Both the Rayleigh–Sommerfeld and Fresnel–Kirchoff
scalar diffraction theories follow directly from this asymptotic theorem [48,70].
These scalar diffraction theories enable both the forward-propagation
techniques using a phase screen model to mimic the observations [71−74] and
the backward-propagation techniques to map the observations to a back plane
[75−77].
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Fig. 1-12.  Bending-angle spectra from a GPS/MET
occultation using the radio holographic technique [67]:
(a) narrow spectral distribution from a single ray in the
mesosphere and (b) complex ray structure low in the
troposphere, including an ocean surface reflection.
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The integral theorem also can be used to propagate a wave through a
succession of surfaces. For example, one form of the multiple phase screen
technique involves placing successive parallel planes spaced along the paraxial
direction of a wave through an inhomogeneous medium. The planes are
mounted perpendicular to the paraxial direction, essentially the preferred
direction of propagation. The medium between the screens is taken as
homogeneous. Therefore, to compensate for the actual inhomogeneous medium
between any two adjacent screens, a phase offset is added to the wave in the
subsequent screen. This technique can be more tractable for propagating a wave
than solving Maxwell’s equations. In two-dimensional problems, the multiple
phase screen technique involves a one-dimensional scalar diffraction integral
applied successively, whereas Maxwell’s equations form a second-order system
that in general requires simultaneous integration over two dimensions [78−82].

In the multipath problem, the mapped or back-propagated field (toward the
emitter) can provide an equivalent virtual time series of phase and amplitude
values in another surface that has the favorable property of no or at least
substantially fewer multi-valued virtual Doppler points. The one-dimensional
back-propagation diffraction integral in a vacuum (see Eq. (A-22) in
Appendix A) is given by

 ( )
( )

exp ˆ ˆ( )E
i E

r
ikr ds

c
r

r
r r1

2

12
12 1 2 2= −( ) ⋅( )




∫λ 2 n (1.4-2)

where r12 1 2= −| |r r ;  r2  denotes a point at the LEO; ds2  denotes an
incremental arc length along the path C , defined by the trajectory of the LEO
over which observations were made during the occultation; and ˆ( )n r2  is the
outward unit normal vector to C . The intervening medium is a vacuum. We
apply this path integral using the LEO observations of phase and amplitude to
obtain the mapped field at the position r1. Because maintaining phase
coherence in this diffraction integral is so important, the three-dimensional
relative motion of the transmitting GPS satellite and the LEO over the
integration span of the occultation observations must be accurately modeled.
Also, phase connection in the mapped phase along the back surface must be
maintained. In addition, the stationary-phase technique can be used to set
practical integration limits in the diffraction integral for the LEO phase and
amplitude measurements as a function of the position r1. These and other
details are found in [76,77,83].

Figure 1-13 provides a one-dimensional schematic for the concept. Here the
LEO travels vertically downward in the LEO plane and vertical distance in this
plane is proportional to elapsed time, 2 to 3 km/s. Multiple rays from different
altitudes in the atmosphere arrive concurrently at the LEO plane. We use the
scalar diffraction integral in Eq. (1.4-2) to propagate the field backward from



Background and Overview 37

the LEO plane toward the emitter to the position of the back plane mounted
perpendicular to the LEO/GPS line. Figure 1-13 suggests that a significant
reduction in multiple rays can be achieved from transforming the observations
to an equivalent “more focused” set in a back plane [76,77,83], particularly
when the actual observation distance is large compared to the vertical scale in
the atmosphere over which multipath occurs. The limb distance of a LEO is
about 3000 km, but the altitude range in the troposphere from which most
multiple rays arrive at the LEO is 10 km or less. Reducing this at least 300 to 1
ratio to 30 to 1 or even 10 to 1 can improve the multipath problem and reduce
the Fresnel zone.

Here is a heuristic way of looking at the back-propagation concept, which
is further discussed in Chapter 2. To simplify the math, let us place the emitting
GPS satellite at infinity, as indicated in Fig. 1-4, and we assume a circular orbit
for the LEO. Consider a point ( , )r θ  well out of the atmosphere ( n ≡ 1) through
which a ray passes after traversing the atmosphere. Suppose we displace that
point by a small angular increment to ( , )r θ θ+ ∆ , holding the radius r  fixed. A
new ray arrives at that new point with a new impact parameter value, a a+ ∆ .
Then the difference between the excess phase on the new ray and the excess
phase on the old one through the point ( , )r θ  is given by ∆ ∆ϕ ∂ϕ ∂θ θ= ( / ) .
From Eq. (1.2-3), we have

∂ϕ
∂θ

∂
∂θ

∂
∂θ

α α= ⋅ −





= − − = − + + ⋅⋅⋅






k
r

k a b k D aT
r GL ( )

2

2
(1.4-3)

D B
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Time

LEO PlaneBack PlaneReference Plane

Fig. 1-13.  Back propagation geometry.  The measured field in the LEO
plane is back propagated to the back plane to reduce multipath.
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where b r r= × →| | / sinr rGL GL θ , the impact parameter of the straight line
between points G (now placed at infinity along the direction θ πG =  in Fig. 1-6)
and L. Also, from Eq. (1.2-4) we have Bouguer’s law for the impact parameter
of the ray, a r= × = +| | sin( )T r θ α . For collimated incident rays, the angle γ
between the ray and the radius vector is simply γ θ α= + . These quantities are
indicated in Fig. 1-4. The distance D is given by

D r= +cos( )θ α (1.4-4)

D is essentially the limb distance minus the small increment aα . It is the
distance between the point ( , )r θ  and the point ( , )a aθ  with θ π αa a= −/ ( )2 ,
as shown in Fig. 1-4. The latter point is on the impact parameter space curve
associated with the rays after their encounter with the atmosphere. The excess
Doppler shown in Fig. 1-10 is proportional to ∂ϕ ∂θ/  in Eq. (1.4-3).

Multiplying Eq. (1.4-3) by λθ π˙ /L 2  yields the relationship between excess
Doppler (assuming that ṙL = 0 ) and the bending angle

λ θ α αf DD = − + [ ]˙
L O 2 (1.4-5)

where θ̇
L
 is the projection of the LEO orbital rate in the plane of propagation,

typically in the range 0.7 to 1.0 mrad/s.
We now construct ∂ ϕ ∂θ2 2/ . When θ  is varied and r  is held fixed,

∆ ∆ ∆a r a= + + ′cos( )( )θ α θ α , where ′ =α αd da/ . Therefore,1

∂
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θ α
α θ α

∂
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cos( )
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1
(1.4-6)

It follows from Eqs. (1.4-3) and (1.4-6) that

∂ ϕ
∂θ

α
α

α α θ α
2

2

2
2

1
= − ′

− ′
+ + [ ]





= +k D

D
a D rO ,  cos( ) (1.4-7)

                                                  
1 Incidentally, Eq. (1.4-5) provides an expression for estimating the duration of an
occultation in the neutral atmosphere. Noting that ∆θ θ= ∂ ∂( )∫ a da/ –1 , we have

∆T a da a a D D
a

a
= ∂ ∂( ) = − + −( )( )( ) ≈ −∫

−˙ / ˙ ˙–θ θ α α θL
–1

L s
1

2 1
2 1 1 2

1
50 100 . The duration

strongly depends on the magnitudes of θ̇L  and α  near sea level.
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The first point to notice is that, on a highly defocused ray with | |D ′ >>α 1, it
follows that ∂ ϕ ∂θ θ2 2/ cos→ kr . Therefore, the LEO excess Doppler rate
approaches essentially a constant in strong defocusing, that is,
df dt rD / ˙ ( / ) ˙ / ˙ cos /= →∂ ϕ ∂θ θ π θ θ λ2 2 2 22

L L L , or 10 to 15 Hz/s, depending

primarily on the value of θ̇
L
. This is an important coherence issue for

holographic techniques applied to the lower troposphere. Holographic
techniques subtract a model phase from the observations to “stop” their phase
variability, i.e., to greatly narrow their spectral bandwidth, making an FFT or a
similar complex spectral analysis practicable. The near-constancy of the excess
phase acceleration in highly defocused areas is an important factor in the
accuracy of the modeled phase profile.

The second point about Eq. (1.4-7) concerns choosing a value for the back-
plane distance DB . Referring to the excess Doppler profile shown in Fig. 1-10
evaluated along the LEO orbit, the undulations in the phase rate curve in the
back plane will be greatly diminished if we choose D DB << . Basically we
want ∂ϕ ∂θ/  to be monotonic, no turning points with respect to θ , or with
respect to time, or with respect to any other displacement metric, for example,
arc length along the path defined by the intersection of the back plane with the
plane of propagation. It follows from Eq. (1.4-7) that this is equivalent to
requiring that the defocusing on the back plane be such that
ζ αB B

− = − >1 1 0D d da( / )  for all values of a  spanned by the occultation
episode. This condition on the value of back-plane distance DB , i.e., that
D d daB( / )α < 1 for any point along the back plane, ensures monotonicity in
excess phase rate versus displacement along the back plane if we can place the
back plane close enough to the impact parameter space curve defined by
( , )a aθ . This may not be achievable with a fixed back plane.

Why not set DB = 0? No multipath and no defocusing there. It turns out
that that is exactly the right choice, but the problem is that one knows a priori
the value of neither α  nor a . From Eq. (1.4-4), it follows that setting DB = 0 is
equivalent to placing the back plane at the point ( , )a aθ  with θ π αa a= −/ ( )2 .
Setting DB = 0 is impossible to uniformly accomplish for all values of a  with a
fixed back plane because the impact parameter space curve as a function of a
is in general not straight, and it is markedly non-linear in multipath zones.

So, with the back-plane methodology, some compromise in choosing DB

must be made. The difference in phase between the point ( , )a aθ  on the impact
parameter space curve and a nearby point ( , )rB Bθ  on the back plane is given to
first order by

∆ ∆ ∆ϕ θ= − +a r0 (1.4-8)
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where ∆θ θ θ= −B a  and ∆r r a= −B . The first-order phase change in the radial
direction is zero because the ray through the point ( , )a aθ  is orthogonal to ra  at
that point. We select r r= B  and θ θ π α= = −B B/ 2  as the fixed point to position
the back plane perpendicular to the LEO/GPS line, with αB  given a fixed value.
Then the phase difference ∆ϕ  for a given value of a  between the point ( , )a aθ
on the impact parameter space curve and a nearby point on the back plane is
given to first order by ∆ϕ θ θ α α= − − + − = − −a r r a aa a( ) ( ) ( ( ) )B B B0 . We now
have a new caustic possibility in the back plane, d daϕ α α/ = −B

− =ad daα / 0 . This arises on the back plane whenever it is away from the
impact parameter space curve r a aa= = −,  / ( )θ π α2 , generated by varying a .
Since most caustics occur where refractivity gradients are large, and therefore
where α  is large, a good rule of thumb to reduce the probability of caustics
occurring on the back plane has been to set α αB Max= , where αMax  is the largest
typical bending angle encountered in the lower troposphere, where major
multipath is likely to occur, 30 to 40 mrad. This choice places the back plane
close to the impact parameter space curve in that vicinity [65,83]. Even though
this plane is in the Earth’s atmosphere, it is treated as though it were in a
vacuum. It serves only as a platform for recovery of the refractivity profile.

We designate the mapped phase using the diffraction integral in Eq. (1.4-2)
from the LEO to the back plane as ϕB B( )s , where sB  is path length along the
back plane perpendicular to the LEO/GPS line. From Eq. (1.2-3) or Eq. (1.4-5),
it follows that, when d daϕB /  is monotonic in the back plane, then the bending
angle of a ray intersecting the back plane can be inferred unambiguously from
the directional derivative of ϕB B( )s . For collimated incident waves, it follows
that

d

ds
k

ϕ αB

B

= − sin (1.4-9)

By assuming spherical symmetry, one obtains the impact parameter for each
bending angle using Bouguer’s law. From the profile of bending-angle and
impact parameter pairs, one can use the standard geometric optics Abel
transform technique to recover the refractivity profile. In severe multipath
situations, the caustic condition on the back plane can be violated, but
experience with actual observations has established that the technique
significantly mitigates multipath problems [83].

The back-plane technique gains two benefits, reduced multipath and also
enhanced vertical resolution. The Fresnel zone is smaller at the back plane by
roughly the factor | / |D DB Bζ ζL L .
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1.4.3 The Canonical Transform Technique

We have noted that rays are stationary-phase paths. Therefore, their space
coordinates can be transformed with Hamilton–Jacobi theory into canonical
coordinates or ray coordinates. The canonical transform technique [84]
essentially uses Hamilton–Jacobi theory to transform the two-dimensional
space coordinates z x,( ) and their slopes dx dz/  for a ray system, that is, for a
family of rays generated by varying, for example, the impact parameter a , into
three-dimensional phase–space coordinates ( , , )z x a . Here x  is vertical directed
in Fig. 1-4 and z  is horizontal directed. In these transformed coordinates, a
becomes the canonical conjugate momentum to the variable x . One then
applies a Fourier integral transform similar to the scalar diffraction integral in
Eq. (1.4-2) to map the field from the phase and amplitude measurements along
the LEO path in space coordinates onto the a -plane in phase–space
coordinates, from which the phase ϕ( )a  is obtained. On this a -plane,
k d a daα ϕ= − ( ) / . The technique yields an unambiguous determination of α
and a , provided that spherical symmetry holds and super-refractive zones are
avoided, and subject, of course, to the quality of the LEO observations and the
modeling. The technique fails in super-refractivity zones because it is in part
ray theory. The technique avoids the potential back-plane caustic and multipath
problems of the general back-propagation technique, and its vertical resolution
potential is comparable to wave theory.

1.4.4 The Impact Parameter Space Curve

Another less elegant but conceptually straightforward method for avoiding
caustic and multipath problems maps the phase and amplitude measurements
made by the LEO along its path to the impact parameter space curve associated
with the rays after their encounter with the atmosphere. As Fig. 1-4 indicates,
the rays are ordered through a transverse plane located perpendicular to the
incoming rays at a position prior to their entering the atmosphere. This pre-
encounter impact parameter space curve is a simple straight line perpendicular
to the incoming collimated rays, or a circular arc of radius ρG / 2  if the
incoming rays are from a spherical wave. This is equivalent to the proposition
that the rays are single-valued as a function of impact parameter a  before
encountering the atmosphere; a one-to-one relationship holds between the value
of the impact parameter of the ray intersecting the transverse plane (or arc) and
the position of that intersection point on the plane (or arc). If spherical
symmetry holds, the rays will continue to be single-valued after passing
through the atmosphere, that is, each ray will continue to have a unique value of
the impact parameter. Therefore, after transecting a spherical symmetric
atmosphere, there will remain a one-to-one relationship between the impact
parameter of a ray and the angle through which it was refracted. The point
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r a aa a= = −,  / ( )θ π α2 , located on an outgoing ray, also preserves this one-to-
one relationship with that ray, if spherical symmetry holds. Bouguer’s law in
Eq. (1.2-4) requires it. The curve traced out by the point ( ,  )ra aθ  as a  is varied
is the space curve for the impact parameter after atmospheric encounter. As
mentioned earlier, there will be no caustics on this post-encounter curve, but it
is no longer a simple curve because of the dispersive refractive gradient.

It is important to keep in mind that we are not so much interested in ray
reconstruction or mapping the electromagnetic field through space as we are in
recovering the refractivity profile. Any construction, however non-physical,
that facilitates refractivity recovery becomes a valid candidate for this
application. In this regard, a fictitious curve placed after a ray’s atmospheric
encounter that denumerates the impact parameter uniquely along its path should
suffice for spherical symmetric geometry because the rays through points in
this curve will be unique [77]. This holds even though the impact parameter
space curve actually lies within the atmosphere.

On the post-encounter impact parameter space curve, the phase of the
intersecting ray with an impact value a  can be obtained from the defining
integral for phase delay given in Eq. (1.2-2) using Bouguer’s law. Let this
phase be defined by ϕ θa aa( , )  [with θ π αa a= −/ ( )2 ]. It can be shown from
Eq. (1.2-2) (with the GPS transmitting satellite at infinity and the phase referred
to the line θ π= / 2 ) that

ϕ θ α α ω ωa a
a

a k a a d( , ) ( ) ( )= +





∞

∫ (1.4-10)

The space curve itself is generated by the tip of the vector ra a( ) , with r aa =
and r Ta a⋅ = 0, where Ta  is the unit tangent vector of the ray passing through
the tip of ra . The angle ψ a  between the tangent vector d as  to the impact
parameter space curve and ra  is given by
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with

ds

da
aa = + ′1 2( )α (1.4-12)

From Eq. (1.4-10), it follows that
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ka
d

da

d

da
aα ϕ= (1.4-13a)

or

α ϕ
( )a

k a

d

da
daa

a
= −

∞

∫1 1
(1.4-13b)

By replacing ϕa  in this integral with the mapped phase ϕa a( )r  obtained from
the back-propagating diffraction integral of the LEO observations given in
Eq. (1.4-2), we recover the profile for α( )a . Note that, from Eq. (1.4-10),
ϕa → 0  as a → ∞  if α → 0 .

Chapter 2 discusses one method for recovering the impact parameter space
curve ( , ( ))a aaθ  starting from an initial known point ( , ( ))a aa1 1θ  on the curve. It
uses the back-propagation diffraction integral to map by iteration the LEO
observations to a converged point ( , ( ) )a a aa a1 1+ +∆ ∆θ θ  near the initial point.
Each successive converged point on that curve yields the recovered values for
ϕa ka( )  and α( )ak , k = ⋅⋅⋅1 2, , . For a spherical symmetric atmosphere, the
recovered impact parameter space curve can be used with the Abel transform to
recover n a( ) . This method also fails in super-refractive layers. Also, Eq. (1.4-
13) shows that the actual shape of the ( , )a aθ  curve, however complicated it
might be, is of no theoretical consequence in recovering α( )a , although a
complicated shape could slow the iteration process.

The difference between the phase ϕ( )a  on the a -plane in phase space,
which uses the canonical transform technique, and ϕa a( )  on the post-encounter
curve in space coordinates ( , )a aθ  is simply

ϕ ϕ α α( ) ( ) ( )a a ka a k daa
a

= − =
∞

∫ (1.4-14)

1.4.5 A Full-Spectrum Wave Theory

The various spectral or holographic approaches and the scalar diffraction
approaches, both the forward- and backward-propagation techniques, involve a
hybrid of wave and ray theory concepts. In the end, profiles of bending angle
versus impact parameter are obtained from which the refractivity is recovered
using the Abel integral transform.

In the quest to deal with multipath problems and related resolution issues,
there is yet another approach that seems not to have been fully considered in
radio occultations. This involves a full-spectrum wave-theoretic treatment of
the electromagnetic propagation through a refracting medium. The technique
presented here uses a modified Mie scattering approach adapted to an
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inhomogeneous medium. It is applicable to the more general case of a
scattering surface embedded in a transparent, spherical refracting medium. An
interesting feature of this approach is its full-spectral series representation of
the wave.

The spectral series is a solution to the Helmholtz equation for the time-
independent part of the wave. Each spectral component of integer number l
consists of a variable spectral coefficient multiplied by the basis functions,
which in their native form are the spherical Hankel functions of integer order l
and the spherical harmonic functions. The effect of the inhomogeneity in the
propagation medium is contained in the spectral coefficients, leaving the basis
functions unchanged from their functional form in a homogeneous medium.

To derive the variation of the spectral coefficients across a spherical
surface, one invokes the continuity conditions from electrodynamics that apply
to the radial and tangential components of the incident, reflected, and
transmitted electromagnetic field vectors, just as is done in Mie scattering
theory. A limiting process yields the differential equations describing the
variation of the spectral coefficients in a stratified medium. The accuracy of the
technique deteriorates when the truncation assumption about the smallness of
certain curvature terms in the field equations becomes invalid, for example,
near a turning point. The related Wentzel–Kramers–Brillouin (WKB) method
has similar problems at a turning point. The technique is not applicable to a
medium with significant back scattering, but it is adaptable to an absorbing
medium.

In this wave theory, each spectral coefficient contains a spectral density
function for the phase delay induced by the refractivity gradient of the
atmosphere. Basically the spectral density function gives the cumulative phase
delay induced by the atmospheric refractivity gradient on the lth  spectral
component of a wave that has traveled from outside the atmosphere down to a
given radial distance. This spectral density for phase delay, which is a function
of the radial coordinate and the spectral number, can be formally written in
terms of an integral over the radial coordinate that explicitly contains the
refractivity gradient. Without a refractivity gradient, there is no phase delay in
the spectral coefficient.

This series representation of the wave can be directly linked to the Fourier
transform of the time series of LEO-observed amplitude and phase. The
spectral density function can be recovered by taking the Fourier transform of
the stopped version of the formal spectral series from wave theory and the
Fourier transform of the stopped phase and amplitude observations made by the
LEO over time. Equating these two transforms enables recovery of the spectral
density function for the phase delay. The refractivity gradient follows from an
inversion of the defining integral for the derivative of the spectral density
function.



Background and Overview 45

In a wave theory, the fundamental observations are the phase and amplitude
measurements of the field, not Doppler observations or the resolving of
possible ambiguities contained therein from multipath. There is no need to
propagate the field or map it from one surface to another. The spectral series
gives the field at an arbitrary point, even inside of the refracting medium,
provided turning points are avoided and the curvature truncation assumption is
valid. Multipath and caustic rays become almost irrelevant in wave theories.
This applies to parabolic equation techniques with multiple phase screens and
to the full-spectrum technique described here. A wave theory calculates the
phase and amplitude of a caustic ray as accurately as any other ray. The
predicted amplitude of the field at the LEO when it is located on a caustic ray is
proportional to | / | /d a d2 2 1 3θ  in wave theory, unlike the infinite value
predicted in (second-order) geometric optics.

In a full-spectrum wave theory, there will be stationary-phase points in
spectral number from where the principal contributions to the summation of the
spectral series originate. These stationary-phase points in spectral number
closely correspond to the impact parameter values (in phase units) of the
multiple rays, including caustic contact points. But in the full-spectrum
technique, all points in spectral number are swept up together into a spectral
density function that holds for all relevant spectral numbers, not just stationary-
phase points.

As mentioned above, we are more interested in the refractivity recovery
than in calculating the electromagnetic field vector at the LEO. In this regard,
the main emphasis in this full-spectrum technique is on computing the spectral
density function for the phase delay, a somewhat simpler task than computing
the electromagnetic wave from the spectral series itself. Moreover, being
fundamentally a result from wave theory, the recovered refractivity profile has
the potential for a much finer radial resolution than dictated by the local first
Fresnel zone. This also applies to certain holographic and scalar diffraction
techniques mentioned above. Theoretical vertical resolution for wave
techniques is proportional to the carrier wavelength divided by the angular
synthetic aperture of the observations θ̇∆T , or roughly 150 1( )∆T −  m  for a
LEO. Here ∆T  is in seconds; it is the minimum of either the time span of the
selected observation sequence or the coherence limit of the observations. This
would suggest a dekameter-level resolution potential, but the actual vertical
resolution will be limited by atmospheric vicissitude, such as horizontal
variations in refractivity caused by advection and turbulence, and also by other
GPS signal structure and data processing limitations [72]. Perhaps 10 percent of
the vertical axis of the local first Fresnel zone is a practicable goal, although the
evidence for this conjecture is still inchoate at this time.

Full-spectrum wave-theoretic approaches are powerful for a certain class of
geometries, but they are notoriously cumbersome. That is why so many
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alternate schemes for propagating waves through complex media have evolved
over the years since Mie scattering theory was first formulated in the early 20th
century. The use of the Helmholtz–Kirkchoff integral theorem for multiple
phase screen propagation is one example. Other parabolic wave equation
techniques for propagating waves through a medium can be found in [81].
Spherical symmetry or some similar symmetry is almost de rigueur by defini-
tion in a full-spectrum wave-theoretic approach. When the wavelength is small
compared to the scale of the refracting medium, the spectral series are slow to
converge. The basis functions in the spectral representation of the wave, the
spherical Bessel functions, and the spherical harmonic functions become
difficult to evaluate in their native forms for large values of spectral number.

Nevertheless, accurate asymptotic forms for the Bessel functions in terms
of the Airy functions exist that are quite comprehensive and easy to use [85,86].
Most computer mathematics programs carry a full library of the Airy functions
of the first and second kind and their derivatives. Also, the asymptotic forms
for the spherical harmonic functions for large spectral number are given by
sinusoid functions. While asymptotic functions are used throughout the series,
the full-spectral character of the wave equation solution is retained. On the
issue of convergence, the stationary-phase technique can be used to identify
neighborhoods in spectral number that contribute to the summation of the series
representation of the wave, thereby eliminating enormous tracts of non-
contributing spectral numbers. Moreover, the stationary-phase technique can be
used to establish a duality between certain wave-theoretic quantities evaluated
at the stationary-phase points in spectral number and the corresponding
quantities in geometric optics. For example, when a stationary-phase point
exists, and when super-refractivity situations are avoided, then there is a close
correspondence between the spectral density function for phase delay evaluated
at a stationary-phase point in spectral number and the eikonal function in
geometric optics for the corresponding ray. This is the ray with an impact
parameter (in phase units) equal to the stationary-phase point in spectral
number.

The essential difference between a full-spectrum wave theory and most
holographic techniques [62−69] is in the treatment of the wave itself. Loosely
speaking, a full-spectrum wave theory involves a pre-stationary-phase process;
holographic techniques involve a post-stationary-phase process. In the full-
spectrum technique, the time-independent part of a harmonic wave is described
by a spectral distribution within an infinite series summation over spectral
number, here an equivalent spectral integral. Holographic treatments describe
the wave as a finite sum of the complex amplitudes from the multiple rays
involved at an observation epoch, as the schematic in Fig. 1-10 suggests. In the
recovery process, both techniques apply a spectral analysis to the phase and
amplitude measurements, for example, a fast Fourier transform. The full-
spectrum technique recovers the spectral distribution for the phase delay
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induced by the refractivity gradient, and it does so with a limit in spectral
resolution that is imposed by the uncertainty principle in the Fourier analysis,
~ /1 ∆T , where ∆T  is the time interval used in the observations. From the
spectral derivative of the recovered spectral distribution for the phase delay, the
gradient of the refractivity profile is recovered from inverting the formal
integral equation that expresses this spectral derivative in terms of the
refractivity gradient. From this one obtains the profile of the change in
refractivity over the span of impact parameter values set by the time interval
∆T . One could place, if needed, the recovered spectral density for phase delay
into the spectral integral for the wave to compute the stationary-phase points of
this integral for successive increments in observation epochs. This gives
profiles of the impact parameter values of the multipath rays, including caustic
rays if they occur there, the bending angles of the rays, and their angular power
spectra.

In comparison, a holographic technique obtains the maximum-likelihood
estimate for the bending angle and impact parameter associated with each of the
finite number of rays detected in the Fourier analysis of the observations within
a given time increment, as well as their angular power spectra. And it then
applies the Abel integral transform from ray theory to the recovered bending-
angle and impact parameter sequences for each ray to obtain the profile of the
change in refractivity over the integration limits. The integration limits in
impact parameter for each recovered ray are set to obtain the refractivity profile
over the impact parameter range applicable to that ray. Appropriate hand-over
at each caustic contact point of the integration limit in the Abel integral from
the one nascent ray to the other provides the connections between integral
segments, and it yields the entire refractivity profile.

If for certain positions of the LEO there are no stationary-phase values in
spectral number in the full-spectrum technique, then in ray theory there will be
no rays or eikonal functions to give phase delays. But in a wave theory, there
still will be a field predicted for such locations, diminished in amplitude
probably, but not zero.

The overviews of Chapters 5 and 6 in Section 1.5 give additional details on
this wave-theory approach.

1.5 Overview

1.5.1 Chapter 2

Chapter 2 is largely a revision of an earlier Jet Propulsion Laboratory (JPL)
publication [87]. Chapter 2 discusses the changes in the phase and signal
amplitude profiles that are observed by a LEO during an occultation of a GPS
satellite as a result of a sharp change across a spherical surface in a refraction-
related property. This would include (1) the refractivity itself, (2) its scale
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height, and (3) the lapse rate of the temperature profile. These sharp changes
are embedded in an otherwise smoothly varying refractivity profile. Across the
tropopause the lapse rate can change abruptly. Strong refractivity gradients
often are associated with a water vapor boundary in the lower troposphere or an
electron density change in a sporadic E-layer of the ionosphere. A
discontinuous refractivity profile could be a useful limiting case.

Chapter 2 uses a combination of geometric optics and scalar diffraction
theory in a thin-screen model to interpret these transients in terms of multipath
interference, shadow zones, diffraction, and caustics that are likely to be
observed by the LEO. In other words, we primarily address the forward-
propagation effects of certain precipitous changes in the vertical profile of the
atmospheric or ionospheric refractivity, such as a discontinuous change in
refractivity or in one of its derivatives. The applicability of the thin-screen
approach in a medium with strong refractive gradients is discussed. The
stationary-phase technique for interpretation and for aiding the computation of
diffraction integrals is discussed.

This hybrid thin-screen/scalar diffraction approach is used to calculate the
phase and amplitude perturbations that would be observed by the LEO from
these perturbations in refractivity. Although one customarily thinks of
diffraction as producing high-frequency fringe effects, which is true, it also can
soften or mitigate the harsh effects predicted by geometric optics, partially
filling in the troughs in shadow zones and rounding the peaks in flaring regions
where caustics are a factor.

Use of an inverse transform technique to sharpen the resolution of localized
features is briefly covered, and it is applied to a specific occultation where the
ray tangency point crosses a sporadic E-layer.

1.5.2 Chapter 3

Chapter 3 also is a revision of an earlier JPL publication [88]. To prepare
the development of a wave theory in a refracting medium, we review basic Mie
scattering theory. Chapter 3 discusses the scattered electromagnetic field from a
spherical scattering surface in a homogeneous medium. The field is expressed
as series solutions to the Helmholtz equation involving spherical Bessel
functions and spherical harmonic functions summed over integer spectral
number l . In Mie theory, the scattering coefficients in the spectral series
solutions are determined by applying the continuity conditions from
electrodynamics that must hold across a boundary bearing a discontinuity ∆N
in refractivity. The total scattering from the sphere includes all scattering
modes, which arise from external reflection, refraction, and internal reflections.

It is well-known that these spectral series converge slowly with spectral
number when the radius ro  of the refracting sphere is very large compared to
the wavelength λ  of the incident wave. Asymptotic forms for the Bessel and
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Legendre polynomial basis functions in terms of the Airy functions and the
complex exponential functions, which are applicable when ro / λ >> 1, can be
used to greatly facilitate the computation of the scattered field. The asymptotic
scattering series is evaluated by converting it into an integration of a phasor
multiplied by a slowly varying function of l . Neighborhoods around spectral
number points yielding stationary-phase values are the principal contributors to
the scattering integrals.

Certain attributes of the scattered field, such as phase, amplitude, reflection,
bending angle, defocusing, and caustics, are evaluated at the stationary points in
spectral number. A close correspondence is established between these attributes
in electrodynamics and their analogues in geometric optics when the
observation point is sufficiently away from the shadow boundary.

Rainbow caustics arising from one or more internal reflections within the
refracting sphere are evaluated and compared to the predictions from the thin-
screen model. For small discontinuities in refractivity, rainbow effects are
shown to be prominent only within relatively narrow directions. Third-order
stationary-phase theory is used to determine their characteristics in terms of
LEO position, the value of ∆N , the ratio ro / λ , and the number of internal
reflections prior to being observed.

Special limiting cases, such as scattering by a perfectly reflecting sphere,
by a strongly absorbing sphere, and by a sphere with infinite radius also are
discussed in terms of stationary-phase concepts with numerical examples.

When the magnitude of the discontinuity in refractivity at the scattering
surface is sufficiently small, | | ~ ( / ) /∆N ro< 2 2 3πλ , about 30 10 6× −  for the
Earth’s radius or equivalently about 20 mrad of refractive bending at the
surface, and when the observation point is sufficiently far from the limb, e.g., at
the LEO, then one obtains good agreement in amplitude between the
computations based on Mie scattering theory and those based on the thin-screen
model combined with scalar diffraction theory.

1.5.3 Chapter 4

In Chapter 4, we review a technique that uses the unitary state transition
matrix for the system of first-order electromagnetic wave equations in a
refracting medium that is stratified and thin, and whose electromagnetic
properties are linear [48,89,90]. This approach has been useful for calculating
the propagation of an electromagnetic wave through a thin film. Although not
essential to the development of the modified Mie scattering approach, several
key propagation concepts are introduced here that are used in the Mie
formulation. These include the representation of incoming and outgoing
standing waves, the use of osculating parameters, their asymptotic forms,
asymptotic matching of incoming and outgoing solutions, and evaluation of the
accuracy of the osculating parameter technique.
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1.5.4 Chapter 5

In wave theory, we are concerned with solutions to Maxwell’s equations.
For a harmonic wave in a homogeneous medium, the time-independent parts of
the electric and magnetic field vectors are solutions to the Helmholtz equation,
which become the components in a spectral series representation of the wave.
Each component consists of a constant spectral coefficient multiplied by the
basis functions used in the spectral series, which in a spherical medium are the
spherical Hankel functions and spherical harmonic functions. Chapter 5
develops a spectral representation for a harmonic electromagnetic wave in a
spherical refracting medium. The resulting spectral series for the field in the
refracting medium also are expressed in terms of the spherical Hankel and
spherical harmonic functions as basis functions. The spectral coefficients for
these basis functions are derived for a wave propagating through this refracting
medium. The spectral coefficients, which in a homogeneous medium are
functions only of spectral number, also vary with radial distance in a refracting
medium. Through a modified Mie scattering theory, these spectral coefficients
also account for, if applicable, scattering from a spherical surface embedded in
the refracting medium. The scattering surface could be defined by a
discontinuity in refractivity, or in its gradient or a higher derivative, or by a
reflecting surface, or by an absorbing surface.

Chapter 5 uses an osculating parameter technique to calculate the spectral
coefficients describing wave propagation in a refracting medium. The method
for obtaining the spectral coefficients is similar to a certain parabolic equation
technique for wave propagation [81]. In a typical parabolic equation technique,
one forms the reduced solution u i k( ) exp( ( )r k r) r= − ⋅ ψ  and then eliminates
less relevant terms. Here ψ ( )kr  is a solution to the Helmholtz equation and k
is the wave number vector in the paraxial direction. In our formulation, the
form is, for a given spectral number l , u r iG knr knr( ) exp( [ ]) ( )= − ψ , where
−G knr[ ] is the phase delay incurred by the lth  spectral component of the wave
only from the refractive gradient. The “optical” delay is retained in the original
Helmholtz solution ψ ( )knr . In the continuous medium overlying the scattering
surface, the solution is applicable when the medium induces negligible back
scattering of the wave, i.e., the medium is transparent. The technique can be
adapted to an absorbing medium. It is shown for the limiting case, where the
spherical stratification approaches a Cartesian stratification, that the osculating
parameter solution becomes the WKB solution for a variable index of
refraction. The accuracy of this technique and its range of applicability are
addressed. The technique fails at or below a “turning point” (which is spectral-
number-dependent in wave theory) because the truncation assumption
regarding the smallness of certain curvature terms in the defining differential
equations for the electromagnetic field is not valid there. The WKB method
also fails for the same reason without appropriate connection formulas between
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regimes above a turning point and below, the tunneling regime. On the other
hand, one must match the incoming and outgoing spectral coefficients at a
turning point to ensure the absence of singularities at the origin from the
Hankel functions, and to obtain the correct form for the outgoing spectral
coefficients. The outgoing coefficients are the only coefficients applicable at
the LEO. Individual Hankel functions are singular at the origin, but the sum of
the first and second kinds equals the spherical Bessel function of the first kind,
which is well-behaved at the origin. This matching of incoming and outgoing
coefficients is accomplished by an asymptotic technique, even though the
individual forms for the spectral coefficients fail at and below the turning point.

Chapter 5 is relevant to the applicability of the single thin phase
screen/scalar diffraction model, discussed in Chapter 2, to a spherical
atmosphere with a significant gradient in refractivity. The thin-screen model
serves as a surrogate for the actual atmosphere. Both the thin-screen/scalar
diffraction approach and the wave-theory approach lead to predictions of the
observed phase and amplitude of the wave having passed through an
intervening atmosphere and perhaps having encountered an embedded
scattering surface. The wave-theory approach explicitly accounts for scattering
and for the effects of the refractive gradient in the surrounding medium on the
phase and amplitude of the electromagnetic wave propagating through the
medium. In comparison, the thin-screen model lumps these effects into a phase
delay profile embedded in the thin screen. This profile mimics the extra phase
delay experienced by the wave due to the atmospheric refractivity profile. In
accounting for the scattering effects from and through the spherical surface of
discontinuity, wave theory also includes the possibility that the scattered wave
has undergone one or more reflections inside this surface. Interference,
shadowing, diffraction, and caustics can be evaluated using both the thin phase
screen/scalar diffraction approach and the full-wave theory approach. The level
of agreement between these two approaches and how that level depends on the
adversity of the wave propagation conditions in the atmosphere are addressed
here. Good agreement with thin-screen results is obtained when “thin
atmosphere” conditions hold in a large sphere, i.e., no caustic points in the
screen, when rainbow caustic directions are avoided, and when the LEO is
some distance from the refracting medium.

Stationary-phase concepts are applied to key observables, such as phase
delay, propagation direction, and wave amplitude, the stationary-phase values
of which are established in spectral number using a phasor representation in the
wave-theory approach. Stationary-phase values for these observables also are
obtained in impact parameter space in geometric optics. Chapter 5 establishes a
duality between stationary-phase variables in spectral number, when they exist,
and their counterparts in geometric optics.

Chapter 5 introduces a general spectral density function G[ , ]ρ ν  for the
phase delay in the spectral coefficient induced by the refractive gradient in the
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medium. This function of radial coordinate ρ = krn r( )  and spectral number ν
accounts for the extra phase delay at the radial position ρ  on each spectral
component induced by the refractive gradient on an incident wave that
asymptotically is either planar or spherical at large approaching distances
relative to the refracting sphere. Correspondence between this spectral density
function for phase delay and key concepts from geometric optics, cumulative
bending angle and the eikonal function giving path delay, is established.

Chapter 5 also describes the properties of turning points, caustics, shadow
zones, and multipath from a wave-theoretic point of view in a spectral
framework. It also discusses these quantities in a second-order geometric optics
framework, including its shortcomings near caustics or in dealing with nascent
ray pairs with nearly merged impact parameters. Third-order stationary-phase
theory is introduced to develop a more accurate ray-theoretic approach near
caustics.

Chapter 5 develops a phasor-based approach for evaluating the spectral
series using numerical integration combined with the stationary-phase
technique. The numerical integration of the spectral representation has been
aided by the stationary-phase technique to identify contributing neighborhoods
in spectral number, greatly improving their efficiency.

Special topics are addressed—for example, calculating the field when a
reflecting surface is embedded in the refracting medium and dealing with
turning point computational difficulties where the osculating parameter
technique degrades in accuracy. Numerical solutions for the spectral
representation of the field at the LEO are presented for various refractivity
profiles and scattering surfaces. Numerical examples also include the field at
the LEO from refractivity profiles giving multipath, shadow zones, super-
refractivity, and caustics, and the field at the LEO from a perfectly reflecting
sphere embedded in an overlying refracting medium.

1.5.5 Chapter 6

Here our goal is use the wave-theory concepts in Chapter 5 to develop a
technique to recover the refractivity profile from occultation observations of
phase and amplitude. The chapter begins with a discussion of GPS receiver
operations and ends with a discussion of a recovery technique using the spectral
representation developed in Chapter 5. We provide a brief summary here of the
recovery sections.

In spherical coordinates, the coplanar components of the time-independent
solutions to the Helmholtz equation for the electric field evaluated at the point
( , )ρ θ  in the plane of propagation may be expressed in spectral series form:
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where al
± ( )ρ  are the spectral coefficients, ξ ρl

± ( )  are the spherical Hankel

functions of the first (+) and second (−) kinds, ρ = krn r( ) , and Pl
m (cos )θ  are

the associated Legendre polynomials with m = 1. In this coordinate frame, the
emitting source is located in the direction θ π= . Here Eo  is an arbitrary
constant when the emitting source is infinitely far, but in the finite case it also
accounts for space loss from the wave-front curvature. Wave theory allows for
the possibility of two polarization modes for the field vectors, the so-called
transverse electric (TE) and transverse magnetic (TM) modes. Here we assume
a TM wave, i.e., the magnetic field vector is oriented perpendicular to the plane
of propagation. The electric field calculated from Eq. (1.5-1) includes both
incoming (−) and outgoing (+) waves, and it takes into account the possibility
that radiant energy has come to the point ( , )ρ θ  via any sector in the refracting
sphere, for example, from the bottom limb and from the top limb. But for an
occultation geometry from a distant emitting source and when the LEO is
located at a point ( , )ρ θL L  well into the top and outgoing sectors,
π α θ/ 2 0− >> >>L L , only the terms with plus signs contribute to the
evaluation of these series at the LEO when ρ λL / >> 1.

These spectral series converge only after the value of the spectral number
becomes comparable to ρo, the radial phase distance of the refracting source,

about 2 108×  for GPS wavelengths. To compute the actual electromagnetic
field from these series, one uses special techniques, for example, contour
integration in the complex spectral number plane, saddle point integration, and
numerical integration aided by stationary-phase theory. One also needs a
number of asymptotic forms for the Hankel functions and the Legendre
polynomials generally valid for large values of the spectral number l  and the
radial coordinate ρ . For l, ρ >> 1, the Bessel functions, or spherical Hankel
functions in this case, can be written accurately in terms of the Airy functions.
Similarly, the spherical harmonic functions can be written in terms of sinusoids.

Hardly any of that computational firepower is necessary when one is
interested only in recovery of the refractivity profile. The important aspect for
refractivity recovery is the variation in phase of each spectral coefficient
al

+ ( )ρ , which varies with radial coordinate because of the refractive gradient in
the medium. For a refracting medium with negligible back scattering and
absorption, these coefficients evaluated at the LEO can be written in the form
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a f l i G ll
+ = −( ) = +( ) ( )exp ( ) ,  †ρ ν νL 2

1
2

(1.5-2)

where f l( ) is a function of spectral number. The specific functional form of
f l( ) depends on the asymptotic boundary conditions for the incoming wave

from the emitting GPS satellite. Chapter 5 mainly uses a collimated incident
wave for the spectral coefficients, but the adjustments to account for a spherical
incident wave are noted there, and they are used in Chapter 6. The quantity
−2G†( )ν  is the spectral density function of the phase delay for the lth  spectral
component evaluated at the position of the LEO for a wave that has originated
from a distant source; both the LEO and the emitter are assumed to be out of
the refracting medium. For a homogeneous medium, G†( )ν ≡ 0 . Otherwise,
G†( )ν  is obtained from the general spectral density function G[ , ]ρ ν , which is
given to sufficient accuracy by the integral
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Here Ai[ ˆ]y  and Bi[ ˆ]y  are the Airy functions of the first and second kind,
and ŷ  is their argument; its exact functional form is given in terms of the ratio

ν ρ/  [85]. The quantity ˆ .†y = ⋅⋅⋅0 441  is the zero point of g y( ˆ) , which is

unique. The spatial difference between ν  and ρ†  is k y K
o

− ≈1 7ˆ†
ρ  m , almost

negligible. For ρ ρ ν< †( ) , the form for g y( ˆ)  in Eq. (1.5-3) does not apply; the
correct form rapidly approaches zero for increasing ŷ > 0 .

The interpretation of the general form G[ , ]ρ ν  is as follows: −G[ , ]ρ ν  is the

phase delay accumulated by the spectral coefficient al
− ( )ρ  for a wave that has

traveled from infinity (where dn d/ ρ → 0 ) down through a refracting medium
to a radial distance r  with ρ = krn r( ) . For a given spectral number ν , the rate

of phase accumulation by the corresponding spectral coefficient al
− ( )ρ  rapidly

approaches zero for decreasing ρ  values less than ν . In this regime, these
spectral coefficients are unaffected by the refracting medium overhead or by a
scattering surface contained therein. Therefore, G[ , ]ρ ν →constant for
decreasing ρ ν< .
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The integration variable ρ = krn r( )  is used for convenience. Crossing a
super-refractivity boundary where d drρ /  reverses sign requires special
treatment, which is discussed in Chapter 6.

G†( )ν  applies to an outgoing wave evaluated at the LEO outside of the
refracting medium. The general form for G†( )ν  when d drρ / > 0  is given by

         G G y K K y† † † †
/

†( ) [ , ],  ˙ ˆ ,  ,  ˆ .ν ρ ν ρ ν ν
ν ν= = − = 



 = ⋅⋅⋅

2
0 441

1 3

(1.5-4)

This connection between the outgoing and general forms for the spectral
density functions is accomplished by asymptotically matching the incoming
and outgoing spectral coefficients at a turning point to satisfy the general
boundary condition that the spectral series shall have no singularity at the
origin. It uses the property that G[ , ]ρ ν →constant for decreasing ρ ρ ν< †( )  to
match the incoming and outgoing coefficients. The accuracy of this asymptotic
matching technique, which involves an approximation, is discussed in
Chapters 5 and 6.

For ρ ρ ν> †( )  and provided that super-refractivity situations are avoided, it
can be shown that ∂ ρ ν ∂ν α ρ νG[ , ] / ˙ ˜ ( , )= . Here ˜ ( , )α ρ ν  is the cumulative one-
way refractive bending angle evaluated at ρ  for an incoming ray with an
impact parameter equal to ν . Thus, 2 ˜ ( , ) ( )α ν ν α ν= L , a virtual bending angle
of a ray with an impact parameter value of ν  that would be observed at the
LEO. If we can recover the profile of 2G†( )ν  versus spectral number, then it is
clear from Eqs. (1.5.3) and (1.5-4), and from the close association of
2dG d†( ) /ν ν  with the total virtual bending angle α νL ( )  under the conditions
just cited, that we can recover the profile of d n dlog / ρ  versus ρ , and thence
N( )ρ . Note that scattering and reflecting surfaces that are embedded in the
refracting medium, including a discontinuity in n r( ) , can be calculated using
the defining integral for G[ , ]ρ ν  in Eq. (1.5-3). For the case of a reflecting
surface, the complete spectral series breaks conveniently into two series, one
for the direct field and one for the reflected field.

One technique for accomplishing the recovery of 2G†( )ν  is to convert the
spectral series in Eq. (1.5-1) into an integral representation in phasor form using
the asymptotic forms for the Hankel functions and the spherical harmonic
functions. This technique also is applicable for evaluating the electromagnetic
field at the LEO using numerical integration aided by the stationary-phase
technique. This converted series in scalar form is given to sufficient accuracy
(for ν ρ< L ) by
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Here exp( )iΨ  is the phasor. Ψ Ψ= ( , , , )ρ ρ θ νG L L  gives the spectral density of
the complete phase delay at the LEO position ( , )ρ θL L  relative to the emitting
GPS satellite, located at ( , )ρ θG G  with θ πG = . Ψ( , , , )ρ ρ θ νG L L  includes the

geometric delay terms and the term −2G†( )ν  for the delay from the refractive
gradient. The diagram in Fig. 1-14 shows the total geometric delay from the
emitter to the receiver expressed in spectral number space. The term,
( ) /ρ νL

2 2 1 2− , gives the geometric delay in phase along a straight line between
the LEO and the tangency point of the line on a sphere of spectral number
radius ν ρ< L  centered at the origin. The term ν θ θν( )L

L−  is an arc length along

this sphere of radius ν , and it is subtracted from ( ) /ρ νL
2 2 1 2−  to correct it to the

intersection of the sphere with the line θ π= / 2 , which is the fixed reference
line for computing phase delays at the LEO. Similarly, the term
( ) /ρ ν νθνG

G2 2 1 2− +  is the geometric phase delay from the emitting GPS satellite
along the straight line to the tangency point on the sphere of radius ν  and
thence along the sphere to the line θ π= / 2 .

Although we have set the upper bound in the spectral integral to ∞ , as a
practical matter the stationary-phase contributions to the integral come from
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Fig. 1-14. Geometric phase delay diagram in spectral number space.
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spectral numbers that are smaller than ρL , about 10 percent smaller for a LEO.
Therefore, the asymptotic forms given in Eq. (1.5-5) for ν ρ< L  are valid.

For given satellite positions ( , , )ρ ρ θG L L , the stationary values of Ψ  with
respect to ν  define the neighborhoods in spectral number that contribute to the
spectral integral. When a stationary value of Ψ  exists, the spectral number
providing that stationary value closely equals the impact parameter (in phase
units) of the corresponding ray, if near-super-refractivity conditions are
avoided. In this case, the stationary value of Ψ  essentially equals the value of
the eikonal function for the corresponding ray, which is the phase delay ϕ
given in Eq. (1.2-2) for the path integral along the ray (see Eq. (1.5-9) and also
Appendix A for its derivation). The stationary values of Ψ  with respect to
spectral number involve a trade-off between geometric delay and atmospheric
delay.

Next, one counter-rotates or “stops” the phase rate of E( , )ρ θL L  using a
realistic model ϕ ρ ρ θm ( , , )G L L  for the phase, which includes the Doppler shift
from the LEO and GPS satellite velocities and the rate of change of the
atmospheric phase delay based on geometric optics. Then the phasor in the
spectral integral for E( , )ρ θL L  in Eq. (1.5-5) becomes exp[ ( )]i mΨ − ϕ . This
general phase-stopping operation is sometimes referred to as forming a
hologram, the coherent mixing of two or more waves. The same holographic
operation is performed on the LEO observations, and then a fast Fourier
transform (or a similar discrete spectral transform) is performed. Equating these
two series, the Fourier transform of the stopped LEO observations to the
Fourier transform of the stopped version for E( , )ρ θL L  in Eq. (1.5-5), leads to

an explicit evaluation of 2G†( )ν  versus spectral number. The resolution of this
recovery is limited by the uncertainty principle in the discrete spectral analysis
technique used on the data. The refractivity profile can be obtained by inverting
the integral equation for 2G†( )ν  defined in Eqs. (1.5-3) and (1.5-4).

It is more efficient to recover the refractivity from 2dG d†( ) /ν ν .2 It can be
shown from Eq. (1.5-5) that

      2
dG

d
i

d E
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†( )
( ) ˙ log ˆ[ ]

,  ˙ν
ν

θ θ θ θ ω
ω

ω ω θ νν ν
ω ω

ν
ν

= + − + = +
=

G L
L L L (1.5-6)

where dE dˆ[ ] /ω ω  is the spectral derivative of the Fourier transform of the
stopped E( , )ρ θL L , θLo  is the orbit angle of the LEO in the plane of propagation

                                                  
2 In wave theory, the reason for using dG d† ( ) /ν ν  instead of G† ( )ν  to recover the
refractivity is similar to the reason in geometric optics for using excess Doppler instead
of phase. It turns out that ∂ ρ ν ∂ρG[ , ] / = 0  at ρ ρ= † , but not ∂ ρ ν ∂νG[ , ] / .
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at the temporal center of the data interval, and θ̇L  is the component of the LEO
orbital angular velocity relative to the occulted GPS satellite in the plane of
propagation. Note in Eq. (1.5-6) that ωm ≈ ± ×2 105  rad s/ , or ±(30 to 35) kHz; the
sign depends on whether the occultation is rising or setting. On the other hand,
within the time interval ∆T  over which the Fourier transform is applied,
ω πν / 2  varies over only a few tens of hertz at most. Equating dE dˆ[ ] /ω ων ν  in
Eq. (1.5-6) to the first derivative of the Fourier transform of the LEO amplitude
and stopped phase data yields a determination of the profile for 2dG d†( ) /ν ν .
This recovered profile for 2dG d†( ) /ν ν  is expressed in terms of the refractivity
profile through an integral equation derivable from Eqs. (1.5-3) and (1.5-4).
This is given by
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The left-hand side (LHS) of this integral equation is evaluated from the
spectral derivative of the Fourier transform of the stopped LEO observations.
The RHS is a convolution integral that must be inverted to obtain log ( )n ρ  in

terms of the recovered sequence of values for 2dG d† / ν . By replacing the Airy
functions with their asymptotic forms applicable for negative values of
ŷ , Ai Bi[ ˆ] [ ˆ] ( ˆ) /y y y2 2 1 1 2+ → −− −π , one can show that the asymptotic version of
the integral in Eq. (1.5-7) equals α νL ( ) , which is given in Eq. (1.2-6).

One can apply a wave-theory analogue of the Abel integral transform to
recover log ( )n ρ , but in wave theory the kernel in the integral equation giving
the weighting distribution of the contributions to log ( )n ρ  is not a Dirac delta
function, as it is with the Abel transform, but rather it is spread over a
characteristic width ∆L . This characteristic width corresponds to ~ ˆ− ≤ ≤2 0y .
Over this interval, the Airy functions make the transition from their tunneling
forms to their negative argument asymptotic forms (sinusoids) corresponding to
ray theory. ∆L  is given by

∆L
K n ro o o= =
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(1.5-8)

where ro  is the radius of curvature for the refracting surface. For GPS
wavelengths at sea level, ∆L ≈ 30 m . Away from super-refractive areas,
shadow zones, and caustics, the principal differences in results from a full-
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spectrum wave theory versus a wave/optics approach originate from within this
relatively narrow altitude band.

Chapter 5 establishes the correspondence between a stationary value with
respect to spectral number for the spectral density function of the total delay,
Ψ Ψ* *( , , , )= ρ ρ θ νG L L , when a stationary value exists, and the phase delay or
eikonal function S ( , , , )*ρ ρ θ ρG L L  for the corresponding ray. This is the ray

with an impact parameter value ρ ν* * *
*( ) ˙= = =ka kr n r , where ν*  is the

spectral number providing a stationary value for Ψ( , , , )ρ ρ θ νG L L . From
geometric optics, one can show [see Appendix A, Eqs. (A-55) and (A-56)] for
an emitting GPS satellite located at the point ( , )ρ θG G  with θ πG = , that the
phase delay at the LEO position ( , )ρ θL L  along a ray with an impact parameter
value of ρ*  is given by

         S = + + + + +
∞

∫ρ χ δ ρ χ δ ρ α ρ α ω ω
ρG G G L L Lcos( ) cos( ) ( ) ( )* *

*

d (1.5-9)

where δG  and δL  are the ray path deflection angles with α δ δ= + G L , and χG

and χL  are orbit-related internal angles of the triangle OLG shown in Fig. 1-6.
It follows from Eq. (1.5-5) that

Ψ( , , , ) ( , , , ),  ˙*
*

*
*ρ ρ θ ν ρ ρ θ ρ ν ρG L L G L L⇔ =S (1.5-10)

At a stationary point in spectral number, ν ρ*
*=̇ , and it follows from Fig. 1-14

that θ θ θ α ρν ν* * ˙ ( )*
G L

L L+ − = . But if for certain positions ( , , )ρ ρ θG L L  there are

no stationary-phase values in spectral number for Ψ( , , , )ρ ρ θ νG L L , then in
geometric optics there are no rays, no bending angle, and no eikonal function.
This would apply to super-refractivity conditions and to strict shadow zones
resulting from a discontinuity in the gradient of the refractivity (not necessarily
super-refracting) or from an eclipsing limb. But even in these severe situations,
Ψ( , , , )ρ ρ θ νG L L  still exists as a spectral density function, and it still provides a
value for the field at ( , )ρ θL L  according to Eq. (1.5-5). The field won’t be zero
there, just greatly diminished with damping fluctuations. Chapter 2 discusses
wave-theory predictions based on scalar diffraction theory of the amplitude and
phase at a LEO from various perturbations in the refractivity profile that
compromise ray-theory accuracy in the transition regions (see Figs. 2-10 and
2-11). These include a strict shadow zone in amplitude caused by a
discontinuity in the gradient of the refractivity, which is not super-refracting,
and also by a discontinuity in refractivity, which is super-refracting.

As already mentioned, the potential radial resolution of this wave-theory
technique is essentially proportional to λ / L , where L  is the component of the
distance traveled by the LEO in the propagation plane perpendicular to the limb
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direction over ∆T , the time interval. ∆T  may be limited by coherence issues;
an error in ϕm  used to stop the phase rate results in a loss of coherence in the
Fourier integral transform if ∆T  is too large. Horizontal variations in
refractivity probably pose a larger limitation to resolution in the lower
troposphere. A horizontal error δD in the assumed value of the limb distance
(effectively from an unknown mesoscale horizontal refractivity gradient)
translates into a vertical resolution limit that is equal to at least
500 1 2( / ) /δD D  m  [72,73]. A 1 percent error in D translates into a 50-m
vertical resolution limit.

The formal integral for G[ , ]ρ ν  in Eq. (1.5-3) enables one to consider a
variety of features embedded in the refracting medium. In addition to a
discontinuity in n( )ρ  or one of its derivatives, or a specular reflecting surface,
or an absorbing medium by adding a complex term to n r( ) , there are other
possibilities. Spectra of recovered bending-angle profiles show broadening to
varying degrees, which arise from measurement noise and atmospheric “noise”
from turbulence, scintillation, and so on [29,68]. With regard to atmospheric
noise, one could treat n( )ρ  as a stochastic variable, for example, a first-order
Markoff process, with a mean value at any altitude equal to the recovered value,
but with statistical parameters that are also recovered from the observations.

1.5.6 Appendices

Miscellaneous topics in geometric optics and wave theory are covered by a
number of appendices. Appendix A deals principally with concepts from
geometric optics and scalar diffraction theory, rays and refractive bending
angle, defocusing, the Fresnel zone, the bending-angle perturbation profile from
a perturbation in the refractivity profile, phase delay, and so on. Appendices A
through F are intended to accompany Chapter 2. Appendix B briefly discusses a
caustic surface for a ray family in terms of envelope theory. Appendix C
estimates the separation altitudes of the tangency points of multipath rays as a
function of the refractivity perturbation across the boundary. This includes a
discussion of the effects of a discontinuity in refractivity or in one of its
gradients, and the resulting caustics that can follow. Appendix D deals with
third-order stationary-phase theory, an important adjunct when dealing with
caustic rays in a ray-theoretic context. An index is developed for setting the
accuracy of second-order geometric optics (using third-order theory) in the
vicinity of a caustic contact point. Appendix E gives the bending-angle profile
versus altitude for a Gaussian refractivity distribution, useful in discussing
multipath, quasi-shadow zones, and caustic rays. Appendix F comments on the
effect of cycle slips from either receiver operations or recovery analyses.
Appendix G gives a short summary of the contour integration technique using
the complex spectral number plane for summing spectral series over real
integers. Appendix H develops the characteristic matrix for a stack of Airy
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layers, which is discussed in Chapter 4. Appendix I summarizes the
electromagnetic field equations in a stratified medium and the use of modified
scalar potentials to derive the field equations. Appendix J addresses the
conditions for near-equivalence between certain wave-theory phase delay
quantities and their counterparts in geometric optics.

1.6 Limitations and Simplifications

This book is surely not oriented toward working with actual data.
Numerous simplifying assumptions have been made to minimize the impact on
an already arcane mathematical framework. Regarding the treatment of actual
data from the GPS observations, regretfully we have ignored several aspects
essential to use of the occultation technique for science. Not the least of our
omissions is a discussion of rendering raw data streams into validated data with
minimal cycle breaks, obtaining corrections to clock epoch offsets in
transmitters and receivers, dealing with the attendant light-time problem to
ensure that the differencing of the phase measurements to eliminate clock
offsets occurs at common transmitter and/or receiver epochs, strategies for
smoothing and sampling noisy data, applying estimation theory, using precision
orbit determination, and, very importantly, using data information systems. The
references [34,51,91,92] address many of these aspects. In addition, we have
simplified the model in which GPS occultations are assumed to occur, again to
minimize the impact on the mathematics. Notable examples are the following.

1.6.1 Ionosphere

Except in Chapter 2, where the thin-screen/scalar diffraction technique has
been used on the sporadic E-layer, phase effects from the ionosphere have been
ignored. For a comprehensive overview of ionospheric applications, see [93].
Linearly combining the dual-frequency signals from the GPS eliminates most
of the ionospheric effect [93−95], but small terms involving f −3 and higher
degrees remain that can be significant, particularly for tangency points in the
upper stratosphere. Modeling the ionosphere to capture the higher-degree terms
has had some success. Also, extrapolation of the dual-frequency correction
from ray tangency points in the mid-troposphere to the lower troposphere
(where the increased noise, particularly on the L2 phase from defocusing and
interference, can result in errors in the local dual-frequency correction that
exceed the correction) has been useful [59,76].

1.6.2 Placing the Occulted GPS Satellite at Infinity

Placing the emitting GPS satellite at infinity simplifies certain equations,
mostly in wave theory. In geometric optics and scalar diffraction theory, this
approximation can be compensated for to a certain extent by also replacing the
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limb distance of the LEO, DL , with the reduced limb distance, D− =1

D DL G
− −+1 1, where DG  is the actual limb distance of the occulted GPS satellite;

D is about 10 percent smaller than DL . With this simplification, the
fundamental relationship between excess Doppler fD  and bending angle α  of a

ray is given by Eq. (1.4-5). Dθ̇L  is essentially the component of the orbital
velocity of the LEO in the plane of propagation perpendicular to rLG , the

direction of the GPS/LEO straight line, or, equivalently, Dθ̇L  is the vertical
rate of descent or ascent of the GPS/LEO straight line through the atmosphere,
2 to 3 km/s. For the Earth’s atmosphere, α <~ .0 05 rad  for dry air and water
vapor combined, and above the lower troposphere α  is less than 0.01 rad.
Thus, we have this near-linear relationship between excess Doppler and
bending angle given in Eq. (1.4-5).

In contrast, for the case where the GPS satellite is at a finite distance, the
appropriate form when the satellites are outside of the refracting medium is
given by Eq. (1.2-3). This form can be reduced to geometric quantities in the
form

λ δ δ δ δfD = ⋅ − + [ ]⊥T V V( ) ,L L G G L GO 2 2 (1.6-1)

Here, T⊥  is a unit vector in the propagation plane perpendicular to rLG , and δL

and δG  are the (small) deflection angles between the vector rLG  and TL  and TG ,
respectively (see Fig. 1-6). Thus, α δ δ= +L G , and δL  is about 8 to 9 times
larger than δG . Nevertheless, dealing with two ray-path deflection angles
instead of one (even though mutually constrained by Snell’s law) and
accounting for curvature effects in the approaching wave front from the
occulted GPS satellite would further complicate the matter.

As described above, in wave theory a spectral integral representation is
used to describe the electromagnetic wave. The main impact of adopting a finite
value for rG  would fall on the asymptotic form that the lth  incoming spectral

coefficient al
− ( )ρ  would assume for large values of ρ = knr  out of the

atmosphere. Here we have assumed that the asymptotic form for al
− ( )ρ

corresponds to a collimated wave, a very simple form involving only the
spectral number, i l l ll− + +1 2 1 1( ) / ( ). But with rG  finite, the asymptotic form

for al
− ( )ρ  would correspond to a spherical wave exp /iρ ρLG LG( )  with its center

at ( , )rG Gθ  with θ πG =  (see Fig. 1-6). Therefore, it is an explicit function of

spectral number and ρG  through a spherical Hankel function ξ ρl
+ ( )G —not

intractable, but certainly more complicated [96]. The asymptotic form of al
− ( )ρ

for the case of a spherical incident wave is briefly discussed in Chapter 5,
Eq. (5.5-3b). This asymptotic form involves an additional phase offset,
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denoting a shift of the reference point for phase calculation from the line
θ π= / 2  used in the collimated case to the position of the emitter. Also, there
is an amplitude term to account for the space loss from a spherical wave. But
almost all of the subsequent discussion in Chapter 5 assumes a collimated
incident wave. The adjustments to account for a finite GPS satellite distance are
briefly presented without derivation in Section 5.10, where ray-theory
correspondence is addressed, and in Section 6.4 in connection with refractivity
recovery.

1.6.3 Time

We have assumed Newtonian time throughout this monograph. But with
actual data when the predicted phase must be computed for a wave moving at
the speed of light, several different times and time intervals are involved:
proper and coordinate times from special and general relativity, asynchronous
timekeeping among all of the receiver and transmitter clocks in the system,
transmit time, receive time, topocentric time, atomic time, and coordinated
Universal time [34,97]. Keeping track of all these aspects of representing and
synchronizing time, essential in actual data processing, unnecessarily
complicates our presentation.

1.6.4 Spherical Symmetry

For the terrestrial planets with mild oblateness, the assumption of spherical
symmetry is moderately accurate, but for the Jovian planets it was
demonstrated about 25 years ago that oblateness must be carefully accounted
for [98−100]. The usual approach for the Earth, which has a 20-km difference
between its equatorial and polar radii, or 0.3 percent, is to apply the oblateness
correction by adjusting the location of the geocenter using a local geoid. For a
given geographical location of the tangency point of the occultation, the local
radius of curvature vector for the sphere can be adjusted to fit the radius of
curvature vector for the local geoid. Thus, a local spherical symmetry is
assumed that more or less fits the curvature of the geopotential surface at that
geographical location. The radius vector of the local sphere is equated to and
aligned with the radius of curvature vector for the geopotential surface. We
have assumed spherical symmetry here.

Other aspects of departures from spherical symmetry, for example,
horizontal variability in the refractivity, are not considered here [38].

1.6.5 Coplanarity

The assumption of coplanarity between the propagation plane and the
satellite orbit planes runs into difficulty mainly when kinematics arise. In
Chapter 6, we briefly address this by identifying two different orbit angles that
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locate the position of the LEO relative to the occulted GPS satellite, θ  in the
LEO orbit plane and θ̃  in the plane of propagation. The obliquity between
these two planes is readily expressed in terms of orbit elements, and it is nearly
constant over an occultation episode for the neutral atmosphere. Depending on
the actual orbits, the obliquity factor d d˜ /θ θ  ranges between 0.6 and 1.0 for
most occultations used for analysis. As discussed above, the term d dt˜ /θ
appears in the expressions for the excess Doppler, but it can be expressed in a
near-linear form in terms of d dtθ /  through spherical trigonometry when the
obliquity factor is given. Also, departures from planarity from cross-track
horizontal variations in refractivity are not considered here.

1.6.6 Circularity

The assumption that the LEO orbit is circular only arises here in connection
with the representation of the excess Doppler in terms of the atmospheric
bending and the satellite velocity. It is a fairly valid assumption, but with actual
data no such approximation is made. The orbits of the LEO and the GPS
satellite constellation and their clock epoch offsets are determined
independently from POD information based on continuous GPS tracking data
from the LEO and from a network of ground stations including the IGS.

1.6.7 Treating the GPS Signal as a Harmonic Wave

The C/A and P ranging codes on the GPS carriers are pseudorandom,
phase-modulating square waves that fully suppress the carrier tone. Each
transition of a code, occurring at a frequency or chip rate of 1.023 MHz for the
C/A code and at 10.23 MHz for the P code, involves a change in phase of the
carrier of either zero or 180 deg in accordance with the pseudorandom recipe
for that particular code. Therefore, the radio frequency (RF) power spectra of
the GPS navigation signals have somewhat complicated shapes. The L1 signal
carries both the C/A and P codes, but on the present GPS satellites the L2
carries only the P code; however, all are phase coherent at the transmitter. Both
the C/A and P codes produce (sin / )x x 2-like spread spectra with single-side
bandwidths of about 1 and 10 MHz, respectively. The side lobes of the P-code
spectrum at the higher harmonics of 10 MHz are attenuated at a higher rate than
the (sin / )x x 2  envelope decays to minimize spillover power in nearby user
bands. The power in the C/A code is 3 dB greater than the power in the P code.
The GPS receiver applies an appropriately time-delayed and Doppler-shifted
replica of the transmitted C/A code to the received signal, and carries out a
number of cross-correlation and digital signal processing tasks. Through these
operations, the receiver isolates the navigation signal emitted by a specific GPS
satellite from all others using the orthogonality property of the ranging codes.
The receiver in essence collapses the spread-spectrum signal for each carrier
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from the selected GPS satellite into a single tone, which is the equivalent of a
harmonic wave with a frequency equal to that of the received carrier. Then the
receiver measures the phase and amplitude of this equivalent harmonic wave in
the presence of noise. Some of the operational aspects of extracting the phase
and amplitude measurements from noisy digital data streams are discussed
briefly in Chapter 6. For details on digital signal processing by a particular
space geodetic GPS receiver, the TurboRogue, and on dealing with the
encrypted P code—the so-called anti-spoofing (AS)—for recovery of the L2
phase, see [101,102]. We assume here that the received signal is indeed from
harmonic waves with the L1 and L2 frequencies plus the Doppler shifts from
satellite motion and from refraction. We also assume that the receiver is
reporting at a suitable sample rate, nominally at 50 Hz, perhaps higher if
needed, the measured phase and amplitude for this harmonic wave. Also, we
assume that phase connection between successive measurements has been
successful—a task not always completely achievable with actual data in
adverse signal conditions.

1.7 Recommendations for the Next Chapters

Which chapters to pursue depends on one’s interest. Chapter 2 and
Appendices A through E have a great deal of basic material pertaining to
geometric optics, scalar diffraction theory, multipath, shadow zones, caustics,
stationary-phase theory, and third-order stationary-phase theory for dealing
with caustics.

Chapter 3 discusses basic Mie scattering theory, but with an emphasis on a
phasor-based spectral representation for the scattered wave and associated
stationary-phase concepts. It can be used as a reference as needed in the later
chapters for asymptotic forms, phasor representations, correspondence with ray
theory concepts, and so on.

Chapter 4 stands alone. It addresses thin-film theory, which uses a unitary
state transition matrix to describe electromagnetic wave propagation in a
laminar medium. Several useful concepts found also in Chapters 3 and 5 are
developed in Chapter 4, which offers an easier Cartesian framework for their
introduction: incoming and outgoing standing waves, osculating parameters,
asymptotic matching methodology, turning points, and problems therefrom. It
also introduces the Airy layer wherein the refractivity gradient is constant. It is
called an Airy layer because the wave equation solutions in this medium are
Airy functions. It has important uses in Chapter 5 for asymptotic matching of
incoming and outgoing spectral coefficients and for dealing with a turning
point.

Chapter 5 provides the basis for the modified Mie scattering theory
applicable to a refracting medium with or without an embedded scattering
surface.



66 Chapter 1

However, if one’s interest is primarily in recovery issues using the full-
spectrum wave-theory approach, then the main effort should be on Chapter 6
with occasional reference to Chapter 5 for the basic wave-theory fundamentals
regarding the full-spectrum treatment in a spherical symmetric refracting
medium.
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Chapter 5
Propagation and Scattering in a

Spherical-Stratified Refracting Medium

5.1 Introduction

We extend the Mie scattering treatment in Chapter 3 to the case of a
scattering spherical surface embedded in a refracting medium that is laminar
but otherwise spherical symmetric. Figure 5-1 depicts this scenario. At the
boundary, n or one of its derivatives may be discontinuous with a refraction
profile n r+ ( )  in the overlying medium and n r− ( )  inside the sphere. The angle
αL  is the refractive bending angle at the LEO. The angle α̃  is the cumulative
bending angle along the ray. A thin phase screen approach to this problem is
discussed in Chapter 2. There the scalar diffraction integral, which is a
convolution integral over the vertical continuum of emitters in a thin screen
model, is used to calculate the phase and amplitude of the emitted wave at a
point some distance from the thin screen. In that essentially wave/optics
approach, the thin screen serves as a surrogate for the actual atmosphere. The
radiation field from the emitters in the screen mimics the phase and amplitude
effects on the electromagnetic wave resulting from propagating through the
actual atmosphere, including the effects from its refractive gradient and from
the embedded scattering surface. Fresnel diffraction, interference, shadowing,
caustics, etc., all can be evaluated using the thin phase screen approach
combined with the scalar diffraction integral.

A wave theory approach is based on solutions to Maxwell’s equations
applied to a spherical atmosphere. A convolution integral also appears, but it is
over spectral number instead of thin screen altitude. The wave theory approach
can be considered as more accurate, albeit computationally more expensive. In
both approaches, thin screen/scalar diffraction theory and wave theory, one
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ends up with a prediction of the observed phase and amplitude of the wave at
some point as a result of its passing through an intervening atmosphere and
perhaps encountering an embedded scattering surface. One question addressed
here is the level of agreement between these two approaches, and how that level
depends on the adversity of the wave propagation conditions in the atmosphere.

One concludes from a review of wave propagation literature that scattering
theory in a sphere is potentially a very complicated problem. For example, see
the survey article by Chapman and Orcutt [1] on wave propagation problems in
seismology. There one finds refracted rays reflecting from multiple surfaces,
Rayleigh and Love waves skittering along boundaries, super-refracted waves
with multiple reflections ducted along between layers, and so on. Here we
specifically rule out ducting, evanescence, or other confounding propagation
effects, except for the effects resulting from the class of discontinuities under
study here, which would include, however, interference, shadow zones,
caustics, diffraction and super-refractivity. We assume that embedded in and
co-centered with this refracting medium is a single large spherical scattering
surface. Across this surface a discontinuity in the refractivity model is assumed
to exist. This discontinuity can take different forms ranging from a
discontinuity in n itself or in its gradient, or merely in one of its higher
derivatives. We must account for the effects of the refractive gradient in the
overlying medium surrounding the sphere on the phase and amplitude of the
electromagnetic wave. Therefore, scattering in this context includes external
reflection from the scattering sphere, transmission through and refraction by the
scattering sphere, including the possibility that the scattered wave has
undergone one or more reflections inside the scattering sphere, and finally the
refractive bending of the scattered ray from the overlying medium.

For the purpose of comparing results from the full wave theory approach
with the scalar diffraction/thin phase screen approach, we assume that the local
gradient of the refractivity is sufficiently small throughout the medium
surrounding the scattering sphere so that the “thin atmosphere” conditions (see
Section 2.2, Eqs. (2.2-8) and (2.2-9) apply. Where rapid changes in refractivity
are encountered, for example, at the boundary of a super-refracting water vapor
layer, we assume that such changes are sufficiently localized so that ray optics
is still valid, i.e., rays do exist that pass through such a barrier, for at least a
certain range of tangency points.

The wave theory approach followed here is derived from Mie scattering
theory, but it is adapted to a medium with a continuously changing refractivity.
The original formulation of Mie scattering theory [2] deals with a single
spherical scattering surface in an otherwise homogeneous medium. Numerical
wave theory approaches involve approximations to the solutions of Maxwell’s
equations in one form or another. In this chapter we use an osculating
parameter technique for dealing with the spectral integrals associated with wave
theory. The accuracy of such a technique and its range of applicability are
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important questions that need to be addressed. The accuracy and range of
applicability depend on the choice of basis functions used in the osculating
parameter technique. For example, in a Cartesian-stratified medium, the use of
sinusoids as the basis functions results in an osculating parameter solution that
is identical to the WKB solution. The conditions for attaining a given accuracy
and ascertaining its range of applicability are well established for WKB
solutions. There also is a wealth of literature on the connection problem in
WKB solutions across the transition zone between the oscillatory and
exponential-decaying branches, important for quantum tunneling processes and
other applications. Fortunately, we are concerned with the electromagnetic field
away from turning points; therefore, asymptotic forms applicable to the
oscillatory branch play an important role here. For a different choice of basis
functions the osculating parameter solutions do not reduce to the WKB forms
and have a different range of applicability. Here the favored basis functions are
the spherical Bessel functions, or their Airy function surrogates, which are
asymptotically equivalent when the radius of the scattering surface is very large
compared to the wavelength of the electromagnetic wave. These particular basis
functions offer a wide range of applicability for the osculating parameter
solutions. Even at a turning point, a bête noir for wave theory, these basis
functions provide a useful, if not completely successful approach.

The question arises concerning the many sections to follow as to which
parts are essential to this wave theory approach. Sections 5.2 and 5.3 provide a
brief review of the basic general concepts in classical electrodynamics
involving harmonic waves: Maxwell’s equations, scalar potentials for
generating the electromagnetic field vectors, series solutions using the
separation of variables technique. These series involve spherical harmonic
functions, which apply for spherical symmetry, but special functions are needed
for the radial component. For the homogeneous case these radial solutions
become the spherical Bessel functions, but in general the radial functions
depend on the refractivity profile of the medium. It is here that techniques like
the WKB method or the osculating parameter technique arise.

Section 5.4 briefly summarizes the asymptotic approximations that are used
in this chapter. A fuller account is found in Section 3.8. This section is referred
to frequently in the later text.

Section 5.5 begins the adaptation of Mie scattering theory from a single
large spherical surface to a concatenated series of concentric layers that in its
limiting form approach a medium with a continuously varying refractivity. This
section introduces a spectral density function for the phase delay induced by the
refractive gradient in the medium. This quantity (defined as G[ , ]ρ ν  in that
section) essentially accounts for the extra phase delay at the radial position ρ
experienced by a radial wave component of spectral number l = −ν 1 2/ , which
results from the refractive gradient of the medium. In a homogeneous medium
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G[ , ]ρ ν ≡ 0 . We consider there the propagation of an incident wave that
asymptotically is planar at large approaching distances relative to the scattering
sphere. The adjustments to account for a spherical approaching wave (when the
emitting GPS satellite is placed only a finite distance away) are noted.

Section 5.6 reviews several important concepts from geometric optics that
are needed later where correspondences are established between these concepts
and certain properties from wave theory when the spectral number assumes a
stationary phase value. Geometric optics is discussed in Appendix A, but here,
in addition to discussing the stationary phase property of a ray and its bending
angle and phase delay, this section also introduces the concept of a cumulative
bending angle along the ray, which mainly arises when evaluating the
electromagnetic field within the refractive medium. This section also discusses
Bouguer’s law and the impact parameter of a ray, the geometric optics
equivalent of the conservation of angular momentum in a conservative force
field. This section also covers defocusing and the first Fresnel zone. Limitations
in second order geometric optics, which arise in association with caustics or
when two or more rays have impact parameter separations that are less than the
first Fresnel zone, are discussed in Section 5.12.

Section 5.7 develops more asymptotic forms needed in the sequel. The ratio
of the radius of curvature of the stratified surface to the wavelength of the
incident wave, ro / λ , is sufficiently large so that asymptotic forms for the
Bessel functions apply. Also, because only spectral numbers that are of the
same order of magnitude as ro / λ  contribute significantly to the spectral
integrals representing the field, we also can use the asymptotic forms for the
harmonic functions that apply for large spectral number. Section 5.7 shows the
close correspondence between certain geometric optics quantities, for example,
the cumulative bending angle of a ray with an impact parameter value ν  and
evaluated at a radial position ρ , and a certain spectral quantity from wave
theory, ∂ ρ ν ∂νG[ , ] / . The issue of the breakdown in accuracy of the osculating
parameter technique near a turning point ν ρ=  also is addressed here.
Guidance from the behavior of the WKB solutions near a turning point is used
to deal with this breakdown. An asymptotic matching technique is developed to
set the value of G[ , ]ρ ν  for the regime ν ρ> .

Section 5.8 begins the representation of the electromagnetic field in terms
of the spectral integrals involving the spectral components of the radial
osculating parameter functions and the harmonic functions for the angle
coordinates.

This discussion is continued in Section 5.9 where a phasor representation
for the integrands in these spectral integrals is introduced. The stationary phase
technique also is introduced here. It is used to determine spectral number points
that yield stationary values of the phasor, thereby aiding the numerical
evaluation of the spectral integrals.
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Section 5.10 compares results from wave theory with results from a thin
phase screen model combined with the scalar diffraction integral.
Correspondences between stationary phase values of certain wave theoretic
quantities and their analogs in geometric optics are discussed.

Section 5.11 deals the turning point problem using an Airy layer.
Section 5.12 discusses caustics and multipath from a wave theoretic point

of view in a spectral number framework. It also discusses caustics and
multipath in a second order geometric optics framework, including its
shortcomings near caustics or in dealing with ray pairs with nearly merged
impact parameters. Third order stationary phase theory is introduced to develop
a ray theory that can accurately deal with these situations. Beginning in
Section 5.12 numerical solutions for the spectral representation of the field at
the LEO are presented. Here the numerical integrations have been aided by the
stationary phase technique to identify contributing neighborhoods in spectral
number, greatly improving its efficiency.

Section 5.13 deals with a spherical scattering surface embedded in an
overlying refracting medium.

Finally, Section 5.14 discusses the perfectly reflecting sphere that is
embedded in an overlying refracting medium. This section also discusses the
correspondence between geometric optics quantities and wave theory quantities
when stationary phase values are used in each system. For example, the
stationary phase values in spectral number in wave theory correspond to ray
path impact parameter values that satisfy the law of reflection.

5.2 Maxwell’s Equations in a Stratified Linear Medium

We follow closely the development given in Section 3.2 for the
homogeneous case; the relevant symbols are defined in that section (See also
the Glossary). Here Gaussian units are used. A harmonic electromagnetic wave
may be written in the form

E E r H H r= − = − }( )exp( ),   ( )exp( )i t i tω ω (5.2-1)

Maxwell’s equations for the time-independent components in a linear medium,
free of charge and current densities, are given by

a)   ,   b)   ,

c)   ( ) ,       d)   ( )

∇× = ∇× = −
∇⋅ = ∇⋅ =





E H H E

E H

ik ikµ ε
ε µ0 0

(5.2-2)

Here ε  is the electrical permitivity of the propagation medium, µ  is its
magnetic permeability, and k = 2π λ/ . k  is the wavenumber of the harmonic
wave in a vacuum, ω = kc , where c  is the velocity of light. These equations in
Eq. (5.2-2) may be recast through successive vector calculus operations into
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separate vector wave equations that E  and H  must individually satisfy [3].
These are given by

     
a)  (log ) ( ) ( (log )

b)  (log ) ( ) ( (log )

∇ + +∇ × ∇× +∇ ⋅ ∇[ ] =
∇ + +∇ × ∇× +∇ ⋅ ∇[ ] =







2 2

2 2

0

0

E E E E

H H H H

µε µ ε

µε ε µ

k

k

v

v
(5.2-3)

Here the identity ∇×∇× = ∇ ∇⋅ −∇A A A( ) 2  is used. These are the modified
wave equations that the time-invariant component of a harmonic wave must
satisfy in a linear medium.

We assume now that the medium is spherical stratified. In this case the
index of refraction is a function of only the radial coordinate,

n r r r( ) ( ) ( )= µ ε (5.2-4)

It follows for this case that the gradient vectors of ε( )r  and µ( )r  are radial
directed, which simplifies Eq. (5.2-3).

For the special case where µ ≡1 throughout the medium, which is
essentially the case for L-band radio signals in the neutral atmosphere,
Eq. (5.2-3) is further simplified. In the special case where E  is perpendicular or
transverse to r , which is the so-called TE wave, then ∇ ⋅ ≡ε ETE 0  and
Eq. (5.2-3a) becomes

∇ + =2 2 2 0E ETE TEn k (5.2-5)

Eq. (5.2-5) is nearly the Helmholtz equation (see Section 3.2, Eq. (3.2-1c))
except for the radial dependency of n(r). This variation of n(r) will be very
slight in our case of a thin atmosphere, except possibly at a boundary. But,
because ro / λ  is so large, even a small variation δn  results in a significant

change k nδ  in the gradient of the phase accumulation of the wave.

5.2.1 Scalar Potential Functions

Following the approach in Section 3.2 for Mie scattering theory, we use the
scalar potential functions for the electromagnetic field in a stratified medium
expressed as a series summed over integer spectral number. It is convenient to
express the electromagnetic field vectors in terms of vector calculus operations
on a pair of scalar potentials, e ( , , )Π r θ φ  and m ( , , )Π r θ φ . In Section 3.2 it is
shown [3] for the case where ε  and µ  are constant that these two scalar
potentials are linearly independent solutions to the Helmholtz equation

∇ + =2 2 2 0Π Πk n (5.2-6)
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where, in Section 3.2, n is a constant. Each solution for a homogeneous
medium can be represented using the technique of separation of variables in
spherical coordinates as a series expansion. The series is expressed in terms of
spherical Bessel functions of integer order l , which are a function of the radial
coordinate ρ = nkr , and the spherical harmonic functions of degree m and order
l , which are functions of the angular coordinates θ  and φ . Here θ  is the angle
between r  and the z-axis. The latter is the axis of propagation (the asymptotic
direction of the Poynting vector S  (Figure 5-1)) for the approaching wave.
Also, φ  is the azimuthal angle about the z-axis. See Figure 4-10 for the
definition of the coordinate frame.

The electromagnetic field vectors for the homogeneous medium are
obtained from a particular vector form for the scalar potentials due to Hertz.
These are given by

E r r

H r r

= ∇ ×∇× ( ) + ∇ × ( )
= ∇ ×∇× ( ) − ∇ × ( )







e m

m e

Π Π

Π Π

ik

ik

µ

ε
(5.2-7)

In the electrodynamics literature, the “TE” and “TM” waves are generated from
linearly independent solutions to the Helmholtz equation in Eq. (5.2-6). In

Eq. (5.2-7) the term ikµ∇×[ ]mΠr  generates the electric field ETE , which is
perpendicular to r, that is, a transverse electric field; this wave is known in the

literature as the “TE” wave. Similarly, the term − ∇ ×[ ]ikε eΠr  generates a
transverse magnetic field HTM  or the “TM” wave. One can readily show (see
Appendix I) that these expressions in Eq. (5.2-7) yield field vectors that satisfy
Maxwell’s equations in Eq. (5.2-2) when ε  and µ  are constant.

For the stratified medium with n n r= ( ), the scalar potentials are solutions
to a modified Helmholtz equation. In classical electrodynamics there is a
certain degree of arbitrariness in the definition of the scalar electric potential Φ
and the vector magnetic potential A  from which E  and H  are derived.
Specifically, the electromagnetic field remains invariant if Φ  and A  are
transformed together to some other pair of functions through a so-called gauge
transformation, that is, the transformation is effected while Φ  and A  are
constrained to satisfy a gauge condition such as that provided by the Lorentz
condition [4]. The electromagnetic field is called gauge invariant. It is rooted in
the symmetries in the electrodynamics equations when they are expressed in the
space-time framework of Special Relativity. There, the form of the
electrodynamics equations for the 4-vector (Φ , A ) remains invariant under a
Lorentz transformation; the 4-vector (Φ , A ) is called covariant in a relativistic
framework.

Similarly, the scalar potentials for the stratified medium have some degree
of freedom in their definition. For the case where n n r= ( ) it is shown in
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Appendix I that the electromagnetic field can be expressed through vector

calculus operations on the modified scalar potentials, e /Πε1 2r[ ] and
m /Πµ1 2r[ ]. These expressions are given by

E r r

H r r

= ∇ ×∇×[ ]+ ∇ ×[ ]
= ∇ ×∇×[ ]− ∇ ×[ ]
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The factors ε1 2/  and µ1 2/  have been inserted into the potential terms in
Eq. (5.2-8) to simplify the resulting modified Helmholtz equation that each of
the scalar potentials must satisfy. These scalar potentials must satisfy modified
Helmholtz equations, which are given by

∇ + = ∇ + = }2 2 2 2 2 20 0e e m m˜ ,  ˜
TM TEΠ Π Π Πk n k n (5.2-9)
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For the case where µ( )r ≡1 throughout the medium, we note from
Eq. (5.2-10) that the modified index of refraction for the TE wave reduces to
the regular index of refraction. When the conditions | |∇ <<n 1 and kro >>1
apply, which do apply for L-band propagation in the Earth’s thin neutral
atmosphere, it follows that ˜( )n r  differs from n r( )  by a small amount of the
order of ′′n k/ 2 ; for L-band signals in dry air this translates into a fractional
difference in refractivity of roughly parts in 1011. So, for computations in
neutral atmosphere conditions we may simply use n r( )  in the modified
Helmholtz wave equation. Therefore, we herewith drop the distinction between
˜

TEn  or ˜
TMn  and n r( ) , and simply use n r( )  in the modified Helmholtz equation

in the following discussion. For the ionosphere these differences may be more
significant.

5.3 Modified Spherical Bessel Functions

We assume now that our stratified medium satisfies the asymptotic
condition n r( ) →1 as r → ∞ , so that the scalar potential series solutions for the
homogeneous medium in Section 3.2 can be used as asymptotic boundary
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conditions for the stratified case. For the stratified medium we again seek
solutions to the modified Helmholtz equation using the technique of separation
of variables of the form

Π Θ Φ= R r( ) ( ) ( )θ φ (5.3-1)

where Π( , , )r θ φ  may be taken as any spectral component of a scalar potential.
For large values of r, where the n r( ) →1, we know that these solutions must
approach the forms given in Chapter 3 for the homogeneous case. We also
conclude because of the spherical symmetry of the propagation medium that
spherical harmonic functions will be applicable, that is, the Θ( )θ  functions will
be the same associated Legendre polynomials P cosl

m ( )θ  of order l  and degree
m , and the Φ( )φ  functions will be sinusoids of the form exp( )±imφ . For an
electromagnetic vector field, the m values are restricted to m = ±1. This follows
from Bauer’s identity, applicable to a plane wave in a homogeneous medium
(see, for example, Chapter 3, Eq. (3.2-3)), also [3]. Referring to Figure A-3,
Bauer’s identity is obtained from the multipole expansion [4] for a spherical
wave centered at the point G and evaluated at the point L. The amplitude and
phase of the time-independent part of the spherical wave is given by
exp /LG LGinkr nkr( ) ( ) . Its expansion in terms of spherical Bessel and spherical
harmonic functions of the transmitter and receiver coordinates is given by

exp
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which is obtained by applying the addition theorem for spherical harmonic
functions. If we now let ρG → ∞  and θ πG = , then ρ ρ ρ θLG G L Lcos→ +  and

we can replace ξ ρ
l

+( )G
 with its asymptotic form for large ρG >> l ,

ξ ρ ρ
l

li i+ +( )→ − ( )G G
( ) exp1 . We substitute these forms into the above expansion

for the spherical wave, cancel terms and note that P ( ) ( ) P ( )l
l

lx x− = −1 . It
follows that for a plane harmonic wave traveling along the z-axis in a
homogeneous medium, the time-independent component is given by
exp cosiρ θ( ) , and that Bauer’s identity is given by

exp cos ( )
( )

P (cos ),  i i l nkrl l
l

l
ρ θ ψ ρ

ρ
θ ρ( ) = +∑ =

=

∞
2 1

0
(5.3-3)
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The vector version is given by multiplying Eq. (5.3-3) by
ˆ sin cos ˆ coscos ˆ sinr θ φ φ φ+ +( )θθ φφ . When the coefficients of the basis functions

R r l iml
m( , )P (cos )exp( )θ φ±  in the series solution to Eq. (5.2-6) for a given

vector component of the field are matched on a term-by-term basis with the
corresponding coefficients in the Bauer series for the same vector component
(and using the property ∂ ∂θP / Pl l= − 1), one finds that m is indeed restricted to
m = ±1. This restriction is perpetuated to the scattered field by the continuity
conditions in electrodynamics that apply to the field components across a
scattering boundary1. The form of the series solutions in this case must
approach as r → ∞  the same form given in Chapter 3, Eq. (3.2-4). Only the
R r( ) functions will differ from the spherical Bessel functions that apply to the
homogeneous case, and these modified functions will approach the Bessel
function form as r → ∞ . Thus, we have

rR krl= ±˜ ( )ξ (5.3-4)

where ξ̃l
±  is related to the spherical Hankel functions of the first (+) and second

(-) kind, but modified for the stratified medium. These functions must satisfy
the modified differential equation for spherical Bessel functions, which is given
by

˜ ( )
( ) ˜ξ ξl ln r

l l

u
± ±″

+ − +



 =2

2
1

0 (5.3-5)

Here, u kr=  and ( ) ( ) /∗ ′ = ∗d du . See Chapter 3, Section 3.2, Eq. (3.2-8) for the
definition of these spherical Hankel functions in the case of a homogenous
medium in terms of the integer Bessel functions of the first and second kind. In
particular, the relationships between the modified spherical Bessel functions of
the first and second kind, ˜ ( )ψ l u  and ˜ ( )χl u , for the stratified medium and the
modified spherical Hankel functions are given by

˜ ( ) ˜ ( ) ˜ ( ),   ˜ ( ) ˜ ( ) ˜ ( ),
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1
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(5.3-6)

For u ul→ →0 0,  ˜ ( )ψ  and ˜ ( )χl u → ∞ .

                                                  
1 The quantum mechanical analog of this restriction in m values for a photon is that its
angular momentum vector is restricted to a unit value times Planck’s constant parallel
or anti-parallel to S .
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The form of the modified spherical Hankel functions ξ̃l
±  will depend on the

functional form of n r( ) . For example, let the special function for the index of
refraction be given by

n
r

r
o2

2

1= + + 



η β (5.3-7)

where η  and β  are constants. This was introduced in [5]. From Eq. (5.3-5) it
can be shown that this form offsets the spherical Hankel function in argument
and spectral number:

˜ ( ) ( ˜),
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l l
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u u
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l l l l u
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1

2 2 2
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For a thin atmosphere η β+ ≈ 0 ; these parameters may be individually chosen
to match the index of refraction and its gradient at u uo= . For example, for dry

air at the Earth's surface η β+ ≈ × −1 4 10 3/  and β ˙ .= − ′ ≈r no 0 2 . On the other
hand, Eq. (5.3-7) does not satisfy our asymptotic boundary condition of
n r( ) →1 as r → ∞ . This form for n r( )  in Eq. (5.3-7) is useful for regional
applications or over thin layers with boundaries on the top and bottom sides,
and it has been used to study ducting, tunneling, super-refractivity, and other
propagation effects in a strongly refracting medium.

Another technique, applicable when n r( )  assumes a general form, uses the

WKB method to obtain an approximate expression for ˜ ( )ξl u± . We define f ul ( )
by

f
n u l l

ul = − +2 2

2
1( )

(5.3-9)

The WKB approximate solution W u ul l
± ±=( ) ˙ ˜ ( )ξ , to Eq. (5.3-5) is given by [6]

W u f i f dul l l
u

u

o

± −= ( ) ± ∫






( ) exp
1

4 (5.3-10)

Depending on the sign of f ul ( ), W ul
± ( ) has either an exponential form or a

sinusoidal form. The WKB method has very widespread applicability. For
examples in seismology see Chapman and Orcutt’s review [1]. It also has been
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mentioned in Chapter 4 in regard to wave propagation through a Cartesian
stratified medium.

We will use an osculating parameter technique here. When n r( )  is variable,
we may write

˜ ( ) ( ) ( ),  ( ),  ξ ρ ξ ρ ρl l lu a krn r u kr± ± ±= = = (5.3-11)

where al
± ( )ρ  is a so-called osculating parameter. It carries the deviation in

amplitude and phase of ˜ ( )ξl u±  from these quantities in ξ ρl
± ( )  due to the

variability of n r( ) .
The general series solution for the scalar potentials in a spherical stratified

medium using this osculating parameter approach is given by

Π± ± ±
±

=

∞
= +( )

=









∑( , , ) cos sin
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P (cos ),
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r a b

krn r

l l
l

l
l

θ φ ρ φ ρ φ ξ ρ
ρ

θ

ρ

( ) ( ) 1

0 (5.3-12)

In a homogeneous medium these spectral coefficients al
±  and bl

±  are functions
only of the spectral number, and their form depends on the asymptotic
boundary conditions for the waveform; see Eqs. (3.2-4)-(3.2-6). In the
inhomogeneous but spherical symmetric medium these spectral coefficients
al
± ( )ρ  and bl

± ( )ρ  vary also with ρ . The technique for obtaining their
variability with ρ  is rather similar to one of the parabolic equation techniques
[7], but here their variability with ρ  is due only to the gradient of the

refractivity; the geometric component of the delay is retained by the ξ ρl
± ( )

functions. Our task is to determine the form of these osculating spectral
coefficients in a refracting medium in which a discontinuity also may be
embedded, and to evaluate the series solutions for the electromagnetic field.

5.4 Asymptotic Forms

Because the spherical Bessel functions will be used extensively in later
sections, we will need their asymptotic forms in terms of the Airy functions that
are applicable for very large values of ρ = knr  and l . These have already been
presented in Chapter 3, Section 3.8. There we established that the principal
contributions to the spectral coefficients comes from spectral number values in
the vicinity of l = ρ . Therefore, asymptotic forms that exploit the relatively
small value of | | /l − ρ ρ  but the large value of ρ  are appropriate. All of the
asymptotic forms presented in Section 3.8 carry over to the stratified case here
with the transformation x kr nkr= → =ρ  in the argument of the Bessel
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functions, and with y y→ ˆ  in the argument of the Airy functions. The argument
ŷ  is a function of ρ = knr r( ) and ν . We have placed the caret over y  to
indicate its dependence on n through ρ . The key asymptotic forms used later
are summarized here.

From Eqs. (3.2-8) and (3.8-9) we have for the spherical Hankel functions
when l ≈ ρ 2
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m
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, l ≈ ρ (5.4-1)

where ρ = knr r( ) and ν = +l 1 2/ , and where Ai[ ˆ]y  and Bi[ ˆ]y  are the Airy
functions of the first and second kind, respectively. See also [8]. For
convenience we will use the spectral number l  and ν = +l 1 2/  more or less
interchangeably. The distinction between them is inconsequential because of
the enormity of their values in the stationary phase neighborhoods. The
argument ŷ  is given by

ˆ ( / )/y = ν ζ ν ρ2 3 (5.4-2)

Here the auxiliary function ζ µ µ ν ρ( ),  /= , and it series expansions in powers

of ρ ν ν2 2 2−( )[ ]/  and in powers of [( ) / ]ρ ν ν−  are defined in Eqs. (3.8-4) and

(3.8-5) for both regimes µ ≥1 and µ ≤1. Using these expansions we
summarize the key relationships between ŷ  and ρ  and ν  below:
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(5.4-3)

                                                  
2 When ρ >> l  Eq. (5.4-1) is not appropriate. Starting from Eq. (3.8-10) it follows that

ξ ρ
l

i i± → ±( ) ( )m exp Χ , and Χ = − − + → −−( ) ( / ) / //ρ ν ν ν ρ π ρ π2 2 1 2 1 4 2Cos l . Hence

ξ ρ ρ
l

li i± +→ ±( ) ( ) ( )m
1 exp  for ρ >> l .
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These truncated series expansions for ŷ  and ν  are very accurate for large
values of ρ  with ν ρ≈ . For most stationary phase neighborhoods the value of

ŷ  will be small compared to Kρ . Therefore, the term K yρ
−2 15ˆ /  in Eq. (5.4-1)

can be dropped in the applications here. For GPS wavelengths
Kρ

− −≈ ×2 715 3 10/ .

The quantity K nrρ π λ= ( / ) /1 3 , a quasi-constant, appears frequently

throughout this monograph. For GPS wavelengths at sea level Kρ ≈ 500 , and

2 30K kρ / ≈  m . The latter turns out to be the spatial distance over which the

Airy functions asymptotically transform from exponential functions to
sinusoidal functions.

We also will need the asymptotic forms for the Airy functions. See [8] for a
comprehensive discussion. They also are given in Chapter 3, Eq. (3.8-7)
applicable for negative values of ŷ  and also by Eq. (3.8-8) for positive values.

5.5 Modified Mie Scattering in a Spherical Stratified
Medium

The central task in this section is to derive the spectral density function for
the phase delay incurred by the l th  spectral component of the wave as a result
of the refractive gradient of the medium. This function G[ , ]ρ ν , with
ν = +l 1 2/ , accounts for the extra phase delay in the l th  spectral coefficient
induced by only the refractive gradient of the medium. The geometric
component of the phase delay is carried by the spherical Hankel function.

To follow a Mie scattering approach, we use the scalar potentials for the
approaching, transmitted and scattered wave. Electric and magnetic scalar
potentials, e ( )Π i  and m ( )Π i , were discussed in Chapter 3 and also in
Section 5.2. An incoming planar harmonic wave with in-plane polarization and
with zero phase at θ π= / 2  can be represented by series solutions in terms of
spherical Bessel functions and spherical harmonic functions. For a
non-conducting homogeneous medium these representations are given by

e
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Here eΠl  and mΠl  are the l th  spectral components of the electric and
magnetic scalar potentials, respectively.
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To obtain the electromagnetic field from these scalar potentials, one uses
the vector curl operations on their vector form given in Eq. (5.2-7). This vector
form, Πlr( ) , is known as the Hertz potential. Here Eo  is the amplitude of the

electric field vector that lies in the plane defined by φ = 0 , that is, along the x̂
direction in Figure 4-10. Similarly, Ho  is the amplitude of the magnetic field

vector, which points in the ŷ  direction. From Maxwell’s equations it follows

that E Ho oε µ= .
Following that treatment for the homogeneous case, we obtain the series

expansion solutions for the scalar potentials of the incoming wave in the
spherical symmetric stratified medium with an index of refraction n u( ). Here
the scalar potentials are given by

e
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The main difference from the homogeneous case is that we have introduced the
spectral coefficients a nul ( ), which are now variable with u , to account for the
effects of the variability in n r( ) . Each spectral component of these series
satisfies the modified Helmholtz equation in Eq. (5.2-8); thus, the product
a nu nul l( ) ( )ψ  constitutes a formal solution to the modified spherical Bessel
equation in Eq. (5.3-3). For each integer value of l , a nul ( ) is an osculating
parameter. The osculating parameter technique has been already discussed in
Section 4.8 for a Cartesian-stratified medium. This technique is useful for
solving certain ordinary differential equations where the rapidly varying
component is carried by the basis function, ψ l nu( )  in this case, and the more
slowly (sometimes) varying component is carried by a nul ( ).

We will need the asymptotic form for a nul ( ) corresponding to an incoming
wave well outside the atmosphere and its refractivity or scattering effects. The
asymptotic form depends on where we place the emitting GPS satellite, either a
finite or an infinite distance away, but always in the direction θ π= . For the
infinite case the incoming waves are planar, and it follows from Eq. (5.5-1) that
a nul ( ) has the limit

a nu i
l

l ll
u n

l( )
( ), 

→ +
+→∞ →

−

1

1 2 1
1

(5.5-3a)
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This form satisfies the asymptotic boundary condition that the approaching
wave must be planar at large distances and travelling in the direction of the
positive z-axis (see Eq. (4.11-1) and Figure 4-10). The form of the approaching
wave is exp cosL Liu θ( ). This is referenced to the phase on the line θ π= / 2 .

For the case of the GPS satellite at a finite distance we have to account for
the arrival of a spherical wave, with its center at the transmitting GPS satellite
instead of a planar or collimated wave. Referring to Figure A-3 in Appendix A,
this spherical wave is given by exp( ) /LG LGiu u . In this case the asymptotic form
for a nul ( ) is more complicated than that given in Eq. (5.5-3a) because it must
correspond to the spectral component of the spherical waveform, which
explicitly includes the location of the transmitter. From Section 5.3 where
Bauer’s identity is derived from the multipole expansion for a spherical wave,
one can work out the correct asymptotic form for the spherical case. It is given
by3

a nu Ai
l

l l
i

u

ul
l l l( )

( )
G

G

→ +
+

( )





− +
+

1 12 1
1

ξ
(5.5-3b)

Here the phase in this asymptotic form is now referenced to the position rG  of
the transmitting GPS satellite4. The amplitude A  is a constant. For example, if

                                                  
3 Eq. (5.5-3b) follows from the homogeneous case, n ≡ 1, by first noting that
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where χ
G

 is the deflection angle of the straight line between the transmitting GPS

satellite and the LEO (see Figure A-3). The GPS satellite is located at ( , )r
G G

θ , but

always in the direction θ π
G

= . The radial component of the electric field at the LEO from

the spherical wave centered at ( , )r
G G
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The RHS of this equation comes from the multipole expansion for (exp[ ] / )iu u
LG LG

given in Eq.(5.3-2). Equating this series form for E r
r
( , )

L L
θ  to the form obtained from

the corresponding vector calculus operations on the trial scalar potential series (see
Eqs. (5.5-7) and (5.5-8)) yields the asymptotic form for the spectral coefficients given
Eq. (5.5-3b). Getting the coefficients for one component of the field, E r

r
( , )

L L
θ  in this

case, is sufficient.
4 We can use the asymptotic form
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we renormalize the amplitude by setting A u= LG , then in the limit as
r rG LG, → ∞ , the asymptotic form for a nul ( ) in Eq. (5.53b), but referenced to
the θ π= / 2  line, approaches the form given in Eq. (5.5-3a) for the collimated
wave. In any case, we will assume the collimated form in Eq. (5.5-3a)
subsequently. The correction for the case of an incident spherical wave appears
straightforward, and it is noted in Section 5.10 and Chapter 6.

To develop a functional form for a nul ( ) we first will obtain the change in
a nul ( ) that results from a change in the index of refraction across a spherical
boundary, which is embedded in an otherwise homogeneous medium and
located at r ro= . By applying the continuity conditions from Maxwell’s
equations, the spectral coefficients for the transmitted and reflected waves are
expressed in terms of the spectral coefficients of the incident wave at the
boundary and the change in refractivity. After obtaining the changes in the
spectral coefficients that apply across a boundary we will use a limiting
procedure to obtain a continuous version for these spectral coefficients.

The change in a nul ( ) obtained in this manner is characterized by a first
order differential equation. On the other hand, Maxwell’s equations comprise a
second order system for this essentially two-dimensional problem. (See
Section 4.11) Therefore, this approach involves an approximation, the accuracy
of which we will establish. We saw in the Cartesian case discussed in
Sections 4.8 and 4.9 that this approximation works well for points sufficiently
distant from a turning point and when thin atmosphere conditions apply. The
same conclusions hold here, although the concept of a turning point in a wave
theory approach has to be expressed in terms of both the radial coordinate ρ
and the spectral number l .

Chapter 3, Sections 3.3 and 3.5, and also Chapter 4, Section 4.6 for the
Cartesian case, discuss the formalism for treating standing electromagnetic
waves in terms of a spectral composition of incoming and outgoing waves. In
Chapter 3 the spherical Bessel function was bifurcated into the spherical
Hankel function of the first kind to represent outgoing waves and its equally
weighted complex conjugate, the spherical Hankel function of the second kind,
to represent incoming waves. Specifically, the spherical Hankel functions of the

                                                                                                                           
i u u u i u u ll

l

+ + −→ − − + = +( )1 2 2 2 1 4 2 2 1 1 2ξ ν ν ν ν ν( ) ( /( )) exp[ sin ( / ) ],  //

G G G G G

in Eq. (5.5-3b) because u
G

 will be very much larger than the range of spectral numbers

yielding stationary values for the spectral series. If the phase terms here are added to the
spectral density function for the phase delay through the atmosphere given from the
collimated case, we have the correct form for the phase for the case where the incident
wave is spherical. See Chapter 5.10, Eq. (5.10-12). The term ( /( )) /u u

G G

2 2 2 1 4− ν  is related

to the reduced limb distance used to convert the geometry with u
G

 finite to an

equivalent geometry with u
G

 infinite.
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first (+) and second (−) kinds, ξl
± , are defined by ξ ψ χl l li± = ± , where

ψ πl lx x J x( ) ( / ) ( )/
/= +2 1 2

1 2  and χ πl lx x Y x( ) ( / ) ( )/
/= +2 1 2

1 2 , where J xl ( )  and
Y xl ( )  are the integer Bessel functions of the first and second kind, respectively.
Using the asymptotic forms for the Bessel functions applicable when x l>> ,
one can readily show that ξl

+  assumes the form that describes an outgoing

spherical wave, and that ξl
−  describes an incoming spherical wave. In a

homogeneous medium outgoing waves interior to the scattering boundary are
generated from incoming waves that reflect around the origin, which the
scattering coefficients bl  show as r → 0. This formalism was necessary to treat
internal reflections at the boundary of the scattering sphere and to isolate the
scattering coefficients for an emerging wave that has undergone a specific
number of internal reflections.

We adopt the same formalism here. Thus, the electric field at any point will
be treated as a spectral composition of radial incoming and radial outgoing
wavelets, which are combined in a weighted summation over all spectral
numbers. They also are combined in such a way to eliminate the singularity at the
origin arising from the Bessel function of the second kind.

5.5.1 Incoming Waves

Let us first consider an incoming incident wave. Here the scalar potentials
(see Eq. (5.5-1)) that generate E( )i  and H( )i  are given by

e ( ) e ( )

m ( ) m ( )

P (cos )cos

P (cos )sin

Π

Π

i o
l
i l

l
l

i o
l
i l

l
l

E

n k
a

n u

n u

H

n k
a

n u

n u

= ( )

= ( )













−

=

∞

−

=

∞

∑

∑

2

2

1

1

1

1

1

1

1

1

1

1

ξ
θ φ

ξ
θ φ

(5.5-4)

Here u kr=  is the radial coordinate expressed in phase units. The scattering
boundary is located at uo ; ε1 and µ1  are constants that define the index of
refraction in the homogeneous medium on the incident side of the boundary
where u uo≥ ; al

i( )  is spectral coefficient for the incoming incident wave.

Because E( )i  and H( )i  are the fields for an incoming wave at the boundary we
must use the spherical Hankel functions of the second kind ξl

− / 2  for the radial
function instead of ψ l  for determining the spectral coefficients at the
boundary5.

                                                  
5 Recall that ψ ξ ξ

l l l
= ++ −( ) / 2 . If we did use ψ

l
 in the scalar potential series for the

incoming incident wave, we would find upon applying the continuity conditions at the
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Similarly, the scalar potentials for the scattered or reflected wave are given
in terms of the scattering coefficients bl  by
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Because the scattered wave is outgoing we must use the spherical Hankel
functions of the first kind ξl

+  in this representation in order to match the
asymptotic boundary condition as r → ∞ , which requires a spherical wavefront
from a scattering surface (and which the ξl

+  function indeed provides in its
asymptotic form for large r). Finally, the scalar potentials for the transmitted wave, which
is incoming, are given by
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Here al
T( )  is the spectral coefficient for the wave transmitted across the

boundary located at uo ; ε2  and µ2  are constants that define the index of
refraction on the transmitted side of the boundary where u uo≤ .

To obtain the continuity conditions consider first the electromagnetic field
generated by the scalar potential e ( , , )Π r θ φ , which generates the T M wave.

From Eq. (5.2-7) and using the identity ∇×∇× = ∇ ∇⋅ −∇A A A( ) 2 , one
obtains

E r r H rTM TM ik= + ⋅∇ ∇( ) − ∇ ( ) = − ∇( ) × }( ) ,   e e e2 2
Π Π Πε (5.5-7)

                                                                                                                           
boundary that the scattering coefficients b nu

l
( )  would carry an extra "-1" term that

would exactly cancel the ξ
l

+ / 2  part of ψ
l
, effectively leaving only the ξ

l

− / 2  part to

represent the entire field, incident plus scattered. For this case where ψ
l
 is used in the

incident series, as ( )n n u2 1 0− → , b nu a nu
l l

i( ) ( ) /( )→ − 2 .
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For example, using Eq. (5.5-4) for the incident wave, (and using the differential

equation for the spherical Bessel function, d d l ll l
2 2 21 1 0ξ ρ ρ ξ/ ( ) /+ − +( ) = ,

for Er ) the field components in Eq. (5.5-7) become
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We can write a set of expressions of a similar form for the scattered fields, E( )S

and H( )S , and for the transmitted fields, E( )T  and H( )T . Using the symmetry
properties of the electromagnetic field discussed in Section 3.2, one also can
readily develop a set of expressions from mΠ  for the TE wave. The complete
field is given by the sum of these TM and TE expressions.

To obtain the required relationships between the spectral coefficients we
use the continuity conditions from Maxwell’s equations that the various field
components must satisfy. Across a boundary with neither surface charges nor
surface currents, Maxwell’s equations require the components of the
electromagnetic field to satisfy the following continuity conditions

E + E = E E + E = E

H + H = H H + H = H
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(5.5-9a)

Here ε1 and µ1  apply to the incident side of the boundary; ε2  and µ2  apply to the
transmitted side.
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We apply these continuity conditions to the vector fields generated from the
scalar potentials in Eqs. (5.5-4), (5.5-5) and (5.5-6) for a boundary located at
r ro= . The electromagnetic field for the incident TM wave is shown in
Eq. (5.5-8), but because they are all similar, we forego writing the other five
sets for the scattered and transmitted TM waves and for all TE modes.
Applying the continuity conditions in Eq. (5.5-9a) to these waves at all
applicable points on the boundary of the sphere located at r ro= , we obtain an
equivalent set of continuity conditions that only involve the individual spectral
coefficients and their Hankel functions. These conditions written in matrix form
become
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Solving the linear system of equations in Eq. (5.5-9b) for the transmission and
scattering coefficients in terms of the incident coefficients, we obtain
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where
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The Wronskian of the spherical Hankel functions

W ξ ξ ξ ξ ξ ξl l l l l lz z i+ − + − + −[ ] = ′ − ′ = −( ), ( ) 2 (5.5-12)

has been used in Eq. (5.5-9b) to obtain the transmission coefficients in
Eq. (5.5-10).

The “electric” coefficients e e,a bl l( )  and the “magnetic” coefficients
m m,a bl l( ) differ from their counterparts by a small quantity of the order

N n= −1. Because we have assumed a thin atmosphere N r( ) <<1; we will
ignore this difference herewith and in the interest of simplifying the notation,
we will suppress the superscripts “e” and “m” on the scattering coefficients and
retain only the electric coefficients in the following. These small differences
can readily be reconstituted to obtain the scattered wave from the vector
calculus operations on both the electric and magnetic scalar potentials. Also, for
the case where E  lies in the plane φ = 0 , one can show that for large spectral
numbers the magnetic coefficients provide a negligible contribution to the field.
This follows from noting that the magnetic coefficients involve P (cos )l

1 θ ,

whereas the electric coefficients involve d P /l d1 θ . However,

P P / ~l l d l1 1 1 1/ d θ( ) <<− .
We note that the GPS signals are principally right-hand circular polarized;

therefore, to study polarization effects from the refracting sphere, we would
need to retain the cross-plane polarization (φ π= / 2 ) scattering terms also,
which are appropriately offset in phase to secure the proper elliptical or circular
polarization. However, for N <<1 the scattering for the two linear polarization
modes differ by an amount of the order N . Also, because of the previously
mentioned relativistic covariance of the electrodynamics equations, we can
exploit that symmetry to convert the solution for H( )S  for the in-plane
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polarized case discussed here directly into a solution for E( )S  for the
cross-plane polarization case.

For outgoing waves, for example, for waves that have passed through the
scattering sphere or, in a geometric optics context, rays that have passed their
point of tangency with an arbitrary spherical boundary at radius r r= *, one
would obtain an analogous system of transfer equations to those given in
Eq. (5.5-10). The only difference is that the scalar potential series for the
incident and transmitted waves would each carry the ξl

+ / 2  functions instead of

the ξl
− / 2  functions because they are outgoing. Also, the scalar potential series

for the waves reflected from the inner side of the boundary would carry the
ξl

− / 2  functions because they are incoming after being reflected.

5.5.2 Evaluating the Spectral Coefficients in a Stratified Medium

We now set µ( )r ≡1 in the following discussion, which further simplifies
the notation, albeit at the price of losing the symmetries in Eqs. (5.5-10) and
(5.5-11).

Next, we treat the continuously varying refractivity in the medium as a
series of concentric shells. Within each spherical shell the refractivity is a
constant, but it changes discontinuously across the boundary of each shell. So,
the refractivity varies in the radial direction in a stepwise manner. This is the
thin film model, or one version of the so-called onion skin model. Across each
boundary the transition equations for the spectral coefficients in Eq. (5.5-10)
apply. After obtaining these spectral coefficients across the boundary of each
shell, we will let the number of shells grow infinite while requiring their
individual widths to become infinitesimal in such a way that the ensemble
spans the appropriate physical space or range.

At the boundary located at u kro o=  we let n n n1 2= − ∆ /  and n n n2 2= + ∆ /
where ∆n  is sufficiently small that u n∆  can be considered as an infinitesimal.
Expanding n n1 2Wl  and n n1 2Wl

±  in powers of u n∆ , we obtain
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It follows that as ∆n → 0 , Wl
± → 0 , but n iWl → −2 . From Eq. (5.5-11) it

follows that bl → 0  and that a al
T

l
i( ) ( )→  when ∆n → 0 .
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For a series of concatenated shells, multiple internal reflections should be
considered. For example, outward reflected rays from inner shell boundaries
will again be reflected inward at the boundary of interest. We have already
discussed this in Section 4.8 for Cartesian layers, and Figure 4-8 in that section
applies as well here. Specifically, we can use the discussion in Section 4.12 to
transform our spherical geometry here into an equivalent Cartesian-stratified
geometry involving Airy layers. By this means, conclusions drawn from the
Cartesian case can be applied here. In Section 4.8 we showed that the ensemble
of doubly reflected rays that add to the incident wave each involve a factor of
the order of ∆n2  (here ∆n  is the average change in index of refraction from
layer to layer). Moreover, the phase of these secondary rays (at the right-hand
boundary of the jth layer in Figure 4-8) will be randomly distributed when the
span ∆r  of the layers is such that ∆r >> λ . It can be shown by vector summing
up the contributions from all of these reflected rays with a second reflection
from the left-hand boundary of the jth layer, that the ratio of their combined
contributions to the main ray contribution is given by ′n λ , which is negligible
for a thin atmosphere. Therefore, in calculating the spectral coefficients for the
transmitted wave through a transparent medium we can neglect secondary and
higher order reflections in our shell model when thin atmosphere conditions
apply and provided that we avoid turning points.

The incident field at the j+1st boundary can be considered as the product of
the transmission coefficients from the previous j layers. If we then expand that
product and retain only the first order terms, we can obtain a first order
differential equation for the spectral coefficients. The range of validity of this
linear truncation is essentially the same as that found for the truncation of the
characteristic matrix to linear terms given in Section 4.4. There we found for a
thin atmosphere that the accuracy of this truncation was satisfactory provided
that we stay clear of turning points.

Let us define al j
−( )  to be the l th  spectral coefficient of an incoming

transmitted wave for the jth layer. The superscript “–“ on al
−  denotes an

incoming wave. We drop herewith the superscripts “i” and “T”. Then, using
Eqs. (5.5-10) and (5.5-13), it follows that

a a
n n

ig n nl j l j
l j

−
+

−( ) = ( ) +
−









1

1 2
1

˙
/

/
∆
∆

(5.5-14)

where gl jρ( ) is a function of the spherical Hankel functions obtained from

Eq. (5.5-13), which is defined in Eq. (5.5-19) and will be discussed shortly.
Here we define ρ = =un r krn r( ) ( ) . For a series of layers it follows from
Eq. (5.5-14) that
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To evaluate Eq. (5.5-15) we note that log ( ) log( )∗∏[ ] = [ ]∗∑j j
. When

g nl j∆ <<1, we can expand log /1− ( )( )[ ]ig n nl j j jρ ∆ , retaining only first order

terms in ∆nj . Thus, Eq. (5.5-15) becomes
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We set6 ∆ ∆n dn d= ( / )ρ ρ . Also, we define ∆n n nj j j= −+1  to be the change in

the index of refraction across the jth boundary (Figure 4-8), and we define
∆ρ ρ ρj j j= −+1  to be the optical thickness of the jth layer. From Eq. (5.5-16) it

follows that in the limit as ∆ρ → 0 , we obtain

1 1
2a
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(5.5-17)

Here gl ( )ρ  is defined by

g
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l l l l l l l l l( )ρ ρ ξ ξ ξ ξ ξ ξ ξ ξ
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±′ ′ ± ″ + −′ +′ −
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Bessel’s equation in Eq. (5.3-3) has implicitly been used in Eq. (5.5-18). The

enormity of ρ ~ 108  allows us to ignore the second term ξ ξ ξ ξl l l l
+ −′ +′ −+( ) / 4 .

Using Bessel’s equation to replace ξl
′′±  and dropping the relatively small term

in Eq. (5.5-18), one obtains

                                                  
6Note  that  d n d n udn du d n dulog / ( / ) log /ρ = + −1 .  Also ,  ρ ρ( log / )d n d =
u d n du u d n du( log / ) /( ( log / ))1 + . The quantity u d n du| log / |is the ratio of the radius
of curvature (r) of the spherical boundary to the local radius of curvature of the ray
( n dn du/ | / |). It is the parameter β  defined in Chapter 2, Eq. (2.2-9), which is small
for a thin atmosphere (for dry air in the Earth's atmosphere at sea level this ratio is
about 0.2). In a super-refracting medium, occasionally caused by a water vapor layer in
the lower troposphere, d duρ / < 0 . Across a boundary d duρ / = 0 , which requires
reverting to the variable u  in Eq. (5.5-17).
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Figure 5-2 shows gl ( )ρ  versus ŷ  including its asymptotic forms. Here ŷ  is
the argument of the Airy functions. The relationship between ŷ , l  and ρ = un
was discussed earlier in Section 5.4, Eqs. (5.4-2) and (5.4-3). It suffices here to
note that ν ρ ρ= + = +l y1 2 2 1 3/ ˙ ˆ( / ) /  to very high accuracy when ρ  is large
and ŷ  is relatively small. For ŷ  values greater than about +2, gl ( )ρ  is
dominated by the spherical Bessel function of the second kind and it breaks
sharply to very large negative values.

The derivation for da dl
− / ρ  fails for this regime, ŷ > 0 , because the basic

assumption that g nl j∆ <<1 in Eq. (5.5-16) is invalid when gl ( )ρ → ∞  for

increasing ν ρ> . In fact, the correct form for gl ( )ρ  rapidly approaches zero for
ν ρ> , rather than blowing up, as the form for gl ( )ρ  given in Eq. (5.5-19) does.
The modified Mie scattering derivation that we have used did not account for
curvature terms and it assumes that g nl ( )ρ ∆  can be made a small quantity,
which is not valid below a turning point. We return this issue in Section 5.7,
after a discussion of asymptotic forms. There we present one method for
asymptotic matching the gl ( )ρ  function given in Eq. (5.5-19) with a version
that does hold for ŷ > 0 .

In general the initial condition for al
−  in Eq. (5.5-17) depends on the

boundary conditions for the electromagnetic field. In a geometric optics
context, the initial condition for al

−  is a ray–specific quantity, that is, it depends
at least in part on the impact parameter of the ray (or cophasal normal path)
associated with the wave as it propagates through the medium. Therefore, the
constant of integration obtained from integrating Eq. (5.5-17) will depend on
ray–specific boundary conditions. However, in the special case where the
approaching rays are collimated before encountering the medium, they all have
the same asymptotic boundary condition as u → ∞ ; in this case the constant of
integration will be invariant with impact parameter. For departing waves this
symmetry is spoiled7 by the intervening refracting medium, and the asymptotic
boundary conditions as u → ∞  will vary with the impact parameter of the
approaching ray.

                                                  
7 We could, however, form a symmetric problem merely by forcing the electromagnetic
wave to be planar along the line θ π= / 2 . The boundary conditions for this case are

a i l l ll
l±

=
−= + +| ( ) / ( )/θ π 2

1 2 1 1  and al
±  at ( , )ρ θ  is

a i l l l i G Gl
l± = + + −−( , , ) ( ) / /( )(exp[ ( [ , ] [ , ])])

* *
ρ θ ρ ρ ν ρ ν1 2 1 1 m

where ρ ρ ρ θ
* *

( , )=  from Eq. (5.6-3), which is Bouguer’s law.
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We define the functional G[ , ]ρ ν  by

G
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d
g dl[ , ]

log
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ρ ρ
ρ
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∫ (5.5-20)

For convenience in this and in the following sections we use the spectral
number l  and the parameterν = +l 1 2/  interchangeably. The distinction
between them is inconsequential because of the enormity of their values in their
stationary phase neighborhoods. It is understood here that form for gl ( )ρ  given
in Eq. (5.5-19) must be modified so that gl ( )ρ → 0  for increasing ν ρ> .

Using the asymptotic boundary condition for al
− ( )ρ  given in Eq. (5.5-3a)

and noting that ρ → =u kr  asymptotically with large r , the solution al
− ( )ρ  can

be obtained by integrating Eq. (5.5-17), and it can be written as

a n i
l

l l
iGl

l− −= +
+

−( )( )
( )

exp [ , ]/ρ ρ ν1 2 1 2 1
1 (5.5-21)

Thus, −G[ , ]ρ ν  is the phase retardation induced by the refractive gradient in the
l th  spectral component of an incoming wave, which results from travelling
through a transparent, spherical symmetric, refracting medium from infinity
down to a radial distance r. Initially, as r → ∞ , the incoming wave is planar
and its spectral coefficient is given by Eq. (5.5-3a). For a homogeneous
medium G[ , ]ρ ν ≡ 0 .

For thin atmospheres the term n1 2/  in Eq. (5.5-21) is essentially unity, and
it will be ignored in subsequent discussions.

5.5.3 Outgoing Waves

We have a similar expression for a radial outgoing wave. In this case we let
∆a a al l

T
l
i+ = −( ) ( ) , where al

i( )  is the spectral coefficient of spectral number l  for
the outward travelling wave incident on the inner side of the boundary, and
al

T( )  is the coefficient for the outward directed transmitted wave. The scalar

potential series for both of these waves use the ξl
+  functions because they are

outgoing waves. Also in Eq. (5.5-9b) we must change the ξl
−  functions to ξl

+

functions because al
i( )  and al

T( )  are now the spectral coefficients for outgoing

waves; similarly, we must change from ξl
+  to ξl

−  for bl  because the reflected
wave is incoming. Working through the same boundary conditions applicable
to an outgoing wave and applying the same limit procedures that held for the
inward case (see Eqs. (5.5-8)-(5.5-17)), one obtains a differential equation for
the spectral coefficients of the outward directed wave
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ρlog
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Comparing Eq. (5.5-22) with Eq. (5.5-17) (and dropping the n1 2/  term), we see
that the gradients of al

−  and al
+  have opposite polarities. In other words, the

spatial derivative of the spectral coefficient along the radial direction of
propagation is invariant to whether the wave is incoming or outgoing. This
must be true from a physical consideration: the rate of phase accumulation at a
given site should be the same for the radial travelling incoming and outgoing
wavelets.

We see upon integrating Eq. (5.5-22) that al
+  will depend on the adopted

value of a constant of integration. Let us fix that constant at r r= *. We write al
+

in the form al
+[ , ]*ρ ρ  to express this dual dependency; here ρ ρ* * *( )= kr n .

Integrating Eq. (5.5-22) and using Eq. (5.5-20) we obtain

a a i G Gl l
+ += − −( )[ ][ , ] [ , ]exp [ , ] [ , ]* * * *ρ ρ ρ ρ ρ ν ρ ν (5.5-23)

If we let r → ∞ , which would be appropriate when observing the refracted
wave from outside the refracting medium, such as the neutral atmosphere
observed from a LEO, then G[ , ]ρ ν → 0  and one obtains

a a iGl l
+ +∞ = −( )[ , ] [ ]exp [ , ]* * * *ρ ρ ρ ρ ν, (5.5-24)

The phase retardation incurred by the ν th  wavelet in traveling outward from r*
to infinity is −G[ , ]ρ ν , which is the same retardation incurred by the inward
traveling wavelet from infinity down to r*.

The actual value(s) of al
+[ ]* *ρ ρ,  will depend in part on the physical

properties assumed for the refracting and perhaps scattering atmosphere, and
also in part on the impact parameter(s) associated with the ray(s). For example,
if dn dr/ ≡ 0  for r ro< , then Eqs. (5.5-17) and (5.5-22) show that both al

−  and

al
+  will be constant in that region. They also must be equal there to avoid the

Hankel function singularity at the origin. (Recall that the definition of the

spherical Bessel function of the first kind, ψ ξ ξl l l= +( )+ − / 2 , which is

well–behaved at the origin.) It follows in this case that a al o o l o
+ −[ ] = ( )ρ ρ ρ, ,

where al o
−( )ρ  is given from Eq. (5.5-21) and it is the applicable spectral

coefficient for an incoming wave that was initially planar. At the LEO we
would have in this case
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l l
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exp ,ρ ρ ν1 2 1
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2 (5.5-25)

Thus, − [ ]2G oρ ν,  is the total phase delay incurred by the l th  spectral

coefficient of an initially plane wave with an impact parameter ρo as a result of
the wave passing completely through an intervening medium. We will return to
this topic in a later section where specific refracting and scattering models are
discussed. We will also discuss later the accuracy of this particular spectral
representation in terms of osculating parameters.

5.5.4 Correspondence between Cartesian and Spherical Stratified
Phase Quantities

In Chapter 4 we applied the thin film concepts to a Cartesian stratified
medium to solve the wave equations expressed in terms of the unitary state
transition matrix M x x2 1,[ ] . Central quantities in that presentation, which are
given in Eqs. (4.4-13), are the phase accumulation A x xo,( )  and its rate ϖ ( )x

(with µ ≡1) that results from the profile n x( )  in that Cartesian stratified
medium. These are

A x x k x dx

x n x n n n x

o
x

x

o o o

o

, ( ' ) ' ,

( ) ( ) ,  
/

( ) =

= −( ) = ( )
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ϖ 2 2 1 2
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Note that A x xo,( )  provides the total phase accumulation of the wave along

the x –axis, perpendicular to the plane of stratification, from the turning point at
xo  up to the altitude at x . It is an implicit function of the refractivity profile
and the “angle of incidence” ϕ  of the wave through the value of no , which is a
constant for a particular wave (generalized Snell’s law, n no = sinϕ ), analogous
to the impact parameter ρ*  for the spherical geometry. Thus, both A x xo,( )
and ϖ ( )x  depend on the angle of incidence of the wave. Defining ρ = kxn x( )
for the Cartesian-stratified case, it follows from Eq. (5.5-26) that A  may be
rewritten in the form

A ρ ρ ϖ ρ
ρ

ϖρ ρ
ρ

ρ

ρ

ρ
, '

log
'

'o n
d

d n

d
d

o o
( ) = −∫ ∫ '

n
(5.5-27)

The first integral provides the “geometric” phase delay (ϖ ϕ/ cosn = ), and the
second integral provides the additional phase delay resulting from the gradient
of the refractivity over the interval ρo to ρ . The correspondence between the
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spectral quantities derived in this section for spherical stratification, gl ( )ρ  and
G[ , ]ρ ν , and their counterparts in Cartesian stratification should be clear. It is

G G
n

d

g
n

o o
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o

ρ ν ρ ν ρ ρ ϖ ρ

ρ
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ρ
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ρ
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Note that this correspondence applies only for ρ ν> . Here the angle of
incidence ϕ  in the Cartesian frame is related to the spectral number l  in the
spherical frame through the relation given in Eq. (4.12-8).

5.5.5 Absorption

The modified Mie scattering approach used here lends itself easily to a
medium with mild absorption. Here the index of refraction has the form
ˆ ( )n n i= +1 κ , where n r( )  is the real component and nκ  is the imaginary component.
κ  is the extinction coefficient and it is real. Because the refracting sphere is so large,
κ  must be a very small quantity or else the penetrating waves will be completely damped
before escaping from the sphere. In any case, it follows from Eq. (5.5-17) that when
κ ≠ 0 , al

− ( )ρ  will have an exponentially damping component in addition to a phase
delay. In this case the constant Eo , which is the amplitude of the incident wave, must be
treated more carefully to account for the actual absorption through the medium. Also, in
the case where the emitting GPS satellite is located at a finite distance away, ρLG , then
Eo  must account for the space loss in amplitude that the spherical wave emitted from the
GPS satellite incurs in travelling to the LEO.
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5.6 More Geometric Optics: Cumulative Bending Angle,
Bouguer’s Law and Defocusing

We need a few more concepts from geometric optics for incoming and
outgoing waves to interpret these wave theory results using the stationary phase
technique. Appendix A briefly discusses deriving the ray path in geometric
optics from Fermat’s principle and the Calculus of Variations. We know that
the path integral for the phase delay along the ray from the observed GPS

satellite to the LEO, nds∫ , is stationary with respect to the path followed by the

signal. That is, the actual path provides a stationary value for the phase delay
compared with the phase delay that would be obtained by following any
neighboring path with the same end points. Here s  is path length. If one applies
the Calculus of Variations to this phase delay integral, then one obtains Euler’s
equation, which is a second order differential equation. This equation provides
a necessary condition that the path must satisfy to yield a stationary value for
the phase delay path integral. When the path integral is expressed in polar

coordinates with r  as the independent variable, then ds r dr= + ′( )1 2 2 1 2
θ

/
, and

Euler’s equation becomes

d

dr
n r n r

∂
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θ ∂
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θ
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+ ′( )



 − + ′( ) =1 1 02 2 2 2 (5.6-1a)

Provided that n is a function only of r , this equation may be integrated once to
obtain a constant of integration
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Here ′θ  is related to the slope of the ray at the point ( , )r θ , and γ  is the angle
between the radius vector and the tangent vector of the ray. For planar
approaching waves, i.e., for the case where the occulted GPS satellite is set
infinitely far away in the θ π=  direction, then γ α θ= +˜ . Here α̃  is the
cumulative bending angle up to the point ( , )r θ  incurred by the ray relative to
its original direction ( )θ = 0  as an approaching planar wave. In Appendix A,
Figure A-1, a positive value for α̃  corresponds to a clockwise rotation of the
tangent vector of the ray relative to the line θ = 0 . Along a ray path satisfying
Euler’s equation the impact parameter ρ* * *= kn r  must be constant when n is
not a function of θ . From geometric optics the differential bending angle dα̃
over an infinitesimal length ds  along the ray path expressed in polar coordinates
is given by d dn dr ds˜ ( / )sinα γ= . Upon applying Eq. (5.6-1b) and integrating
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dα̃  along the ray path from the GPS satellite (assumed to be at infinity) to an
approaching point ( , )r θ  one obtains

˜[ , ] ˜ ( , )
log
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( ),

* *
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ρ ρ
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ρ
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= = −
−

= < <









∞

∫
'2 2 (5.6-2)

Here θ*  marks the angular coordinate of the tangency or turning point for a
particular ray with an impact parameter value of ρ* . See Figure A-1. We note
that θ θ ρ* * *( )= , and also α̃  at any approaching point ( , )r θ  may be considered
to be a function of ρ = rn r( )  and the impact parameter ρ*  for the ray passing
through that point. Thus, ˜ ˜ ( , )*α α ρ ρ=  and also ˜ ˜[ , ]α α θ= r . From Eqs. (5.6-1)
and (5.6-2) it follows that the impact parameter ρ* * *( )= kr n r  is given in terms
of ( , )r θ  and α̃  by
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This is a version of Bouguer’s law, which has been expressed for both an
incoming ray (π θ θ> ≥ *) and for an outgoing ray (θ θ* ≥ > 0 ). By symmetry
the bending angle for an outgoing ray is 2 ˜ ( , ) ˜ ( , )* * *α ρ ρ α ρ ρ− , where
˜ ( , )* *α ρ ρ  is the cumulative bending up to the turning point. The constant value

of ρ*  along a given ray path is the geometric optics analogue of the
conservation of angular momentum in a classical mechanical system with
spherical symmetry in its force field. One can solve Eqs. (5.6-2) and (5.6-3)
simultaneously to obtain the values of both ρ*  and ˜ ( , )*α ρ ρ  for a given
position ( , )r θ  (which may or may not be uniquely determined, depending on
the profile of n r( ) ).

We denote the coordinates (with the radial coordinate in phase units) of the
LEO by ρ θL L,( ) . When the LEO is outside of the atmosphere where n ≡1,
˜ ( , )*α ρ ρ → 0  as ρ→∞ . Therefore, Bouguer’s law becomes

ρ θ α ρ α α ρ ρL L L Lsin constant, ˜ ( , )* * *+( ) = = = }   2 (5.6-4)

Here α ρL ( )*  is the total refractive bending angle observed by the LEO. Thus,
for a given LEO position ρ θL L,( ) , there is a one-to-one correspondence (when
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spherical symmetry applies) between αL  and the impact parameter ρ* * *= kr n .
These relations are given by

       

ρ ρ θ α ρ
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d
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where ( , )* *r θ  is the turning point for a ray with an impact parameter value of
ρ* . Given a position ρ θL L,( )  for the LEO, Eqs. (5.6-4) and (5.6-5) yield the
values ρ*  and α ρL ( )*  that must follow in order for the LEO to observe the ray
(or rays if ρ*  and αL  are not uniquely determined at that position) from the
GPS satellite that has been deflected as a result of refractive bending. The point
of tangency of the ray on the boundary is located at an angular position
θ π α= −/ /L2 2  (for an infinitely distant GPS) and at a radial position of
r r= *.

Figure 5-3 shows an example of the solution to Eq. (5.6-5) for an
exponential refractivity profile. In this case the bending angle decreases
monotonically with increasing impact parameter so that the solution is unique.
If the refractivity profile causes the bending angle to exhibit reversals in slope,
then there may be multiple solutions for a certain range of impact parameter
values. We will discuss the question of uniqueness of the impact parameter and
total bending angle for a given LEO position ρ θL L,( )  in Section 5.12, which
also addresses multipath and ray caustics.

5.6.1 Defocusing

Because defocusing will arise when we apply the stationary phase
technique in wave theory, we review it here in somewhat more detail than given
in Appendix A. Defocusing arises because of dispersive refraction. Incoming
rays, which were collimated prior to encountering the atmosphere, are dispersed
or spread out after entering the atmosphere because of the refractive gradient.
To obtain a measure of the defocusing at a given point ( , )r θ , we compute the
ratio of the signal flux density of an incoming wave prior to encountering the
atmosphere with the signal flux density at the point ( , )r θ . This ratio is readily
obtained from Bouguer’s law and by invoking the principle of conservation of
energy. Let ∆σ  be the perpendicular displacement in phase units between two
rays (Figure A-1) in the neighborhood of the point ( , )r θ  that results from
changing the impact parameter by an amount ∆ρ* . Conservation of energy
requires (assuming complete transparency) that the power through a cross
section of width ∆ρ*  in the collimated beam prior to atmospheric entry must
equal the power through the cross section of width ∆σ  at the point ( , )r θ  after
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atmospheric entry. Thus, the ratio ζ ρ σ= ∆ ∆* /  gives us the defocusing, and its
square root gives the ratio of the signal amplitudes: the amplitude of the wave
at ( , )r θ  divided by the amplitude of the collimated wave prior to atmospheric
entry.

Upon differentiating Bouguer’s law given in Eq. (5.6-3) with respect to ρ* ,
and defining γ θ α= + ˜ , one obtains
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From Eq. (5.6-2) it follows that

∂α
∂ρ

ρ
ρ

ρ ρ

ρ ρ

ρ
ρ ρ ρ ρ

ρ
ρ

ρ

ρ ρ

ρ

ρ

˜ '
'

' '

'

'
'

'
'

'

* *
/

*
/

*
/

= −
−( )

=

−
−( )

− 



 −( )













∞

∞

∫

∫

n

dn

d

d

n

dn

d

d

d n

dn

d

d

2 2 3 2

2 2 1 2 2 2 1 2
1

(5.6-8)

and
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On the lower line of Eq. (5.6-8) the integral is well behaved and bounded as
ρ ρ* → . For an exponential refractivity profile this integral is very closely
equal to − ˜ ( , ) /*α ρ ρ H . But Eqs. (5.6-8) and (5.6-9) show that ∂α ∂ρ˜ / *  and

∂α ∂ρ˜ /  have a ρ ρ2 2 1 2
−( )−*

/
singularity at ρ ρ= * . In the defocusing

expression these partial derivatives are multiplied by D , which is given by
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D = = ± −( )ρ γ ρ ρCos *
/2 2 1 2

(5.6-10)

D is essentially the optical distance between the point ( , )r θ  and the tangency
point on the circle of radius ρ* . Here the plus sign is used for an outgoing ray
and the minus sign for incoming ray. Multiplying the expressions in
Eqs. (5.6-8) or (5.6-9) by D removes the singularity.

In Eq. (5.6-6) ∆r  and r∆θ  are constrained to follow a displacement
direction at ( , )r θ  that is perpendicular to the ray. From Figure A-1 it follows
that

k r kr∆ ∆ ∆ ∆= =σ γ θ σ γsin ,  cos (5.6-11)

If these quantities in Eqs. (5.6-8)–(5.6-11) are substituted into Eq. (5.6-6) and
Bouguer’s law is used, one can show that the defocusing ratios are given by
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For a point located at the LEO outside of the atmosphere, ˜ ( , )*α ρ ρ → 0  as
ρ→∞ , and the outgoing form in Eq. (5.6-12) becomes

d

d
D

d

d

σ
ρ

α
ρ

α α ρ ρ
* *

* *
˜

,  ˜ ˜ ( , )= − =1 2 (5.6-13)

Here D becomes the distance (in phase units) of the LEO from the Earth’s limb
minus ρ α ρ* *L ( ). In practice the GPS satellites are not infinitely distant; their
orbit radius is only about 4 Earth radii. To compensate for the wavefront
curvature resulting from this finite distance, it is customary to use the “reduced
distance” in Eq. (5.6-13), which is defined in the same way as the “reduced
mass” in two-body dynamical systems. This is given by

D D D− − −= +1 1 1
L G (5.6-14)

This definition for D follows directly from the Fresnel approximation in the
thin phase screen theory (see Section 5.11). This form for D gives a slightly
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more accurate measure of defocusing. It also is very useful in thin phase screen
analyses for diffraction and multipath.

For a circular LEO orbit it follows from Figure A-1 that ∆ ∆σ θ= D L ,
where ∆θL  is the displacement in orbital position of the LEO required to
intercept two nearby rays separated in impact parameter by ∆ρ* . In this case of
a circular orbit for the LEO the defocusing equation in Eq. (5.6-13) can be
written as

ζ σ
ρ

θ
ρ

α
ρ

− = = = −1 1 2
d

d
D

d
D

d

d* *

L
˜

d *

(5.6-13’)

From Eq.(5.6-2) it follows that
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For an exponential refractivity profile d n d H dn d2 2 1/ /ρ ρ= − − , and it follows
that d d H˜ / ˙ ˜ /*α ρ α= − . In this case the defocusing is related to the deflection
2α̃D  at the LEO expressed as the number of scale heights 2 ˜ /αD H  that
refractive bending induces.

At a turning point γ θ α π= + →˜ / 2 . One could naïvely conclude that the
defocusing factor would reduce to 1 / ( )* * *n r n+ ′ , which is the reciprocal of the
derivative of the impact parameter ρ*  with respect the radial coordinate kr  at
the turning point ( , )* *r θ . Eqs. (5.6-8) and (5.6-10) show that the singularity in
∂α ρ ρ ∂ρ˜ ( , )* *  as ρ ρ→ *  yields a finite contribution to the defocusing ratio at
a turning point. From Eqs. (5.6-8) and (5.6-10), Eq. (5.6-12) becomes at a
turning point
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thus confirming our intuition.

5.7 More Asymptotic Forms

We will need asymptotic forms for the functions gl ( )ρ  and G[ , ]ρ ν ,
defined in Eqs. (5.5-19) and (5.5-20). We also must complete the unfinished
business of fixing that form for gl ( )ρ . The derivation obtained in Section 5.5
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based on modified Mie scattering fails when ρ ρ ν< †( ) . We know from
Chapter 3 that the principal contributions to the scattering integrals come from
spectral coefficients with wavenumber values in the near vicinity of l = ρ*.
Here asymptotic forms that exploit the relatively small value of | | /* *l − ρ ρ  but
the large value of ρ*  are appropriate. Therefore, we use the asymptotic forms
for the spherical Hankel functions in terms of the Airy functions of the first and
second kind that have been given in Eq. (5.4-1).

It then follows upon replacing the spherical Hankel functions with their
Airy function asymptotic forms that for gl ( )ρ  one obtains from Eq. (5.5-19b)
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Here ν = +l 1 2/ . The quantities ŷ  and Kν  are defined in Eq. (5.4-3) in terms

of ν  and ρ . When ν ρ≈  we can drop the ˆ /y Kν
2  term in Eq. (5.7-1) because of

the enormity of ρ* .
It follows from Eq. (5.5-20) that the applicable asymptotic form for G[ , ]ρ ν

is given by
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Here ˆ'y  and ρ'  are integration variables and they are connected through the
expression for ŷ  given in Eq. (5.4-3).

If one uses the asymptotic forms applicable to negative arguments for the
Airy functions given by Eq. (3.8-7), it follows from Eq. (5.7-1) that

g y y( ˆ) / ˆ ,
/

= −( ) − ( ) + ⋅⋅⋅( ) <ρ ν ν ρ2 2 1 2 31 1 32 (5.7-3)

Similarly, from Eq. (5.7-2) it follows for negative arguments that
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Even at ν ρ=  this asymptotic form for G[ , ]ρ ν  is very accurate. The difference
between the values of G[ , ]ρ ν  from Eqs. (5.7-2) and (5.7-4) is roughly
0 2 1. / ( )β β− , yielding a relative accuracy in most conditions of a few parts in
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105. A super-refractive region requires special treatment; see Sections 5.8 and
6.4.

From the cumulative bending angle given by Eq. (5.6-2), we have upon
integrating on ρ*
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From Eqs. (5.7-4) and (5.7-5) it follows that
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We recall that −G[ , ]ρ ν  is the phase delay induced by the spherical symmetric
atmosphere upon a radial wavelet of wavenumber ν  at the radial position
ρ = krn. Eq. (5.7-6) provides a physical interpretation for these integrals of the
bending angle. This is similar in form to the stationary phase condition that we
found for the thin screen model in Chapter 2. We note from Eq. (5.7-6) that
−2G[ , ]ρ ρ  corresponds to the thin screen phase profile ϕ( )h  given in
Eq. (2.5-1).

Differentiating G[ , ]ρ ν  given in Eq. (5.7-2) with respect to ν  and using the
defining differential equation for the Airy functions ( Ai Ai,Bi Bi′′ = ′′ =ˆ ˆy y )
(and the near–linear relationship between ŷ  and ν  given in Eq. (5.4-3)), one
obtains

∂
∂ν ρ

∂
∂ν

ρ π
ρ

ρ
ρ ν ρ

G d n

d

dg

dy

y
d K

d n

d
y y d= 





= −






+( )∞ ∞

∫ ∫log
' ˆ

ˆ
' ˙

log
'

Ai[ ˆ' ] Bi[ ˆ' ] '2 2 (5.7-7)

For negative arguments of ŷ  we can use the negative asymptotic forms for the
Airy functions; Eq. (5.7-7) becomes (alternately, one can take the partial
derivative of Eq. (5.7-4))
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Comparing Eqs. (5.6-2) and (5.7-8), we conclude that for negative values of ŷ ,
that is, for ν ρ< , ∂ ρ ν ∂νG[ , ] /  may be interpreted as the cumulative bending
angle ˜ ( , )α ρ ν  of an incoming ray at the radial position r  (ρ = krn) and with
an impact parameter value ν . This high accuracy deteriorates only when ν  lies
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in the immediate vicinity of ρ , that is, near a turning point ( , )* *r θ  where
θ π α ρ ρ* * */ ˜ ( , )= −2 .

Figure 5-4 shows the level of this agreement in the vicinity of a turning
point for an exponential refractivity profile that decreases with altitude. It
roughly corresponds to the dry air refractivity profile for the Earth near sea
level. Only for spectral numbers in the range ν ρ ν> − ~ 2K  does the agreement
deteriorate. Note that ˜ ( , )α ρ ν  is not defined for ν ρ>  ( ŷ > 0 ) and that

∂α ρ ν ∂ν˜ ( , ) / →∞  as ν ρ→ − , whereas G[ , ]ρ ν  and its derivatives are
well-behaved in this neighborhood. However, the form for G[ , ]ρ ν  derived in
Section 5.5 and its asymptotic form given in Eqs. (5.7-1) and (5.7-2) changes
rapidly with increasing ν ρ>  because of the behavior of the Airy function of
the second kind. This form fails for ν ρ> . In fact, we show later that g y( ˆ)→ 0
for increasing ŷ > 0 , and that G[ , ]ρ ν  approaches a constant value. The small
discrepancies near the turning point result from the deviations of the Airy
functions from their asymptotic forms for negative arguments, and also from
the breakdown in accuracy of the spectral coefficients near a turning point
when they are derived from Eq. (5.5-21).

That there should be this very close although not perfect agreement
between ray quantities and spectral coefficients from wave theory when the
latter are evaluated at their stationary phase values should not be too surprising.
In wave theory the stationary phase process, which is discussed later, is effected
over spectral number. The value ν ρ= * , which we will show to be very close to
a stationary phase point in wave theory, also provides an equivalent ray in
geometric optics between the GPS satellite and the point ( , )r θ  and with an
impact parameter value of ρ* . The ray path from geometric optics is in fact a
path of stationary phase. Using geometric optics we may vary the impact
parameter over impact parameter space for a ray with constrained end points.
The path has a stationary value of the phase delay when the impact parameter
takes on the value ρ ν* = . Any other path with the same end points in the
neighborhood of the actual ray path would present the observer at ( , )r θ  with a
phase delay that differed from the observed phase delay by an amount that has
only a second order dependency on the coordinate and slope deviations of the
alternate path. This second order variation would be due to a deviation in the
value of the impact parameter. We will show that when stationary values are
assumed by the spectral number in wave theory and by the impact parameter in
geometric optics, a close correspondence results.

Consider next the variability of G oρ ν,[ ] with r  for a fixed value of the
wavenumber νo . At a point ( , )r θ  on the approaching side at large distances
where n→1 we set kr osinθ ν= ; that is, νo  becomes the impact parameter for
the ray passing through the point ( , )r θ . Figure 5-6 shows an example of
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G oρ ν,[ ] versus ρ  in the vicinity of ρ ν= o . Here an exponential refractivity

profile decreasing with altitude is used, but the altitude range shown in the
figure is very narrow, ~ /7K k

oν , or about 100 meters for the parameter values

shown. This is a small fraction of the refractivity scale height H  (7 km)
adopted in the figure. On the left side of the figure where ŷ < 0 , that is, where
ρ ν> o , the g y( ˆ)  function is slowly decreasing with increasing ŷ  (decreasing
ρ ) (see Figure 5-2), and G oρ ν,[ ] decreases with increasing ŷ  because the
gradient of the refractivity is negative. On the right side where ŷ > 0 , g y( ˆ)
breaks sharply negative because of the rapid growth of the Airy function of the
second kind in this region. Therefore, G[ , ]ρ ν , according to the (erroneous)
form given in Eq. (5.7-2), rapidly increases with increasing ŷ  because the
refractivity gradient is negative in the example shown in Figure 5-6. Therefore,
G[ , ]ρ ν  has a stationary value at the zero crossing of g y( ˆ)  near ρ ν= o . The

correct form for G[ , ]ρ ν  approaches a constant for increasing ŷ > 0 . This point

where g y( ˆ) = 0 marks a stationary phase point for al
− ( )ρ  (with l o= +ν 1 2/ ). It

also is a stationary point for al
+ ( )ρ . Later, we will set a al l

+ −=  at this point to
ensure no singularity at the origin from the spherical Hankel function.

For other refractivity profiles there may be other stationary points for
G[ , ]ρ ν , but their occurrence and location are dependent on the functional form
of the index of refraction. However, there is always one near ρ ν= o  (unless
dn d/ ρ ≡ 0 ), reflecting the “deepest penetration” by the corresponding ray into
the sphere. This region ( ŷ > 0 ) corresponds to refractivity features lying below
the impact parameter, or the point of closest approach of the associated ray.
Such features lying below the point of closest approach are not “felt” by the
ray. Refractivity features lying near or above the point of closest approach
( ŷ ≤ 0 ) are “felt” twice by the ray, incoming and outgoing; these can have a
prominent effect on the shape of G[ , ]ρ ν  depending on the actual refractivity
profile.

From the definition of G[ , ]ρ ν  in Eq. (5.7-2) and the asymptotic form for
g g yl ( ) ( ˆ)ρ →  in Eq. (5.7-1), it follows that

∂
∂ρ ρ

π
ρν

G d n

d
g y

K
d n

d
y y y y y

= − =

− ′ + ′ − +( )( )










log
( ˆ) ˙

log
Ai [ ˆ] Bi [ ˆ] ˆ Ai[ ˆ] Bi[ ˆ]2 2 2 2 2

(5.7-9)

Upon setting ∂ ∂ρG = 0 , it follows that either g y( ˆ) = 0 or dn d/ ρ = 0 , or both
are zero. Consider first g y( ˆ) = 0 in Eq. (5.7-9). This yields a stationary point for
ŷ  that is given by
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ˆ
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† †

† †
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2 2

2 2 0 44133L (5.7-10)

From the properties of the Airy functions it can be shown that this value of ˆ†y
is unique. We have seen this quantity before in Section 4.6 in regard to turning
points for waves traveling in a Cartesian stratified Airy medium.

Upon using Eq. (5.4-3), Eq. (5.7-9) yields a stationary phase point ρ ρ= †

that is a function of νo  and which is given by

ρ ν ρ
ρ ρ

†
†

†
†

†

˙ ˆ ,   = − = 






o K y K
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1
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Thus | | / / ~† †

†
ρ ν ν

ρ
− = −

o o y K2 102 6  for νo ~ 108 .

Continuing to the second derivative ∂ ∂ρ2 2G / , and evaluating it at
ρ ρ ν= ( )†

o , it follows that

∂
∂ρ

π
ρρ

ν
ρ

2

2

2 2G
K

d n

d
y y

† †

˙
log

Ai ˆ Bi ˆ† †= − [ ] + [ ]( ) (5.7-12)

Setting νo  equal to kr n ro o( ) , adopting the Earth’s dry air conditions at sea level

and using 19 cm for the GPS wavelength, ∂ ∂ρ
ρ

2 2 610G / ~†
−  rad. It follows

that G  will vary from its stationary phase value by the order of 1 radian when
G | | / ~† †ρ ρ ρ− −10 5 ; in other words, the stationary phase neighborhood about

ρ ρ= †  is very narrow (a few dekameters) when ρ†  is so large (~ 2 108× ).
In stationary phase theory to be discussed in a later section, we will use

∂ ρ ν ∂ν2 2G[ , ] / , which is related to defocusing. A comparison of this second
derivative with ∂α ρ ν ∂ν˜ ( , ) / , also used in geometric optics for defocusing, is
shown in Figure 5-5 for the same conditions given in Figure 5-4. These also
agree closely except near a turning point. Accordingly, we expect the accuracy
of the amplitude predicted by the osculating parameter technique to degrade for
ŷ > −2 . Numerical results verify this threshold. At a turning point the correct
value for the defocusing in a refracting medium without scattering is given by
Eq. (5.6-16). At a turning point the stationary phase value in spectral number
using the osculating parameter approach is equivalent to ŷ ≈ 0 ; it predicts unity
there for the defocusing.
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5.7.1 Equating dG , dρρ νν νν // νν†(( ))[ ]  to α̃α νν,,νν(( )) and d G , d2 †ρρ νν νν // νν(( )) 22[ ]  to

d dα̃α νν,,νν(( )) // ν

We note in Figure 5-4 at the turning point that the value of ∂ ρ ν ∂νG o , /[ ]
at ν ν ρ ρ= = +† †ˆo K y

o
 is very close to the value of ˜ ,α ρ ρo o( ) . In fact, the

actual numbers for Figure 5-4 are 10.114 mrad for ˜ ,α ρ ρo o( )  and 10.115 mrad
for ∂ ρ ν ∂νG o , /[ ] . Since ρ ρ ν= †( ) marks a stationary point for G[ , ]ρ ν  where

∂ ∂ρG / = 0 , it follows that

dG

d

dG

d

G† †

†

( ) ( ), [ , ]ν
ν

ρ ν ν
ν

∂ ρ ν
∂ν ρ ρ

≡ [ ] = 

 =

(5.7-13)

Hence, dG d†( ) /ν ν  also will be very close in value to ˜ ( , )α ν ν . We show in
Appendix J that
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Therefore, the difference between dG d†( ) /ν ν  and ˜ ( , )α ν ν  depends on the
curvature in the refractivity profile. For the thin atmosphere conditions shown
in Figure 5-4 it can be shown that ρ ρo d n d2 2 310/ mrad( ) ≈ − , which we can

ignore. The difference becomes significant when near-super-refractivity
conditions are encountered. See Appendix J.

Similarly, it can be shown that
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For thin atmosphere conditions the curvature term here also can be dropped.
Eqs. (5.7-14) and (5.7-15) will play key roles when we apply the stationary
phase technique in wave theory to outgoing waves. Eq. (5.7-14) is related to the
ray bending angle and Eq. (5.7-15) is related to defocusing.

Regarding the near-equivalence of dG dρ ν ν ν†( ), /[ ]  and ˜ ( , )α ν ν , we note a
property of Bauer’s identity. It is given in cylindrical coordinates in
Eq. (4.10-9). We can transform θ θ α→ +  to obtain



Propagation and Scattering 369

exp cos ( )expi i J ill
l

l

l

ρ θ α ρ θ α+( )[ ] = +( )[ ]
=−∞

=∞

∑ (5.7-16)

Noting that G oρ ν,[ ] shows up in the exponential term in the spectral series

representations for the electromagnetic field, its variability with spectral
number will be related to the angle α  above. Thus, we would expect
∂ ρ ν ∂νG o , /[ ]  to be closely related to an angle, which turns out to be the

bending angle.

5.7.2 Fixing the Form for g y( )ˆ  when ŷ > 0  by Asymptotic
Matching

We have noted the failure of the modified Mie scattering approach to
secure the correct form for g y( ˆ)  when ˆ ~y > 0 . Eq. (5.7-1) predicts that
g y( ˆ)→∞  for increasing ŷ > 0 ; in fact, g y( ˆ)  should approach zero. We can use
the form for g y( ˆ)  obtained from an Airy layer as guidance. In an Airy layer
with a boundary at r r= 0  the profile for the index of refraction is given by

n n n n r r2
0
2

0 02= + ′ −( ), where n0  and ′n  are constants. The quadratic term

′( ) −( )( )n r r r r0
2

0 0
2

/  is negligible.

In Chapter 4, Section 4.12, we showed that the solutions to the wave
equations in a spherical Airy layer are given by the Airy functions. Let U y± ( ˜)
be a solution for the scalar field, top sign for an outgoing wave, bottom sign for
an incoming wave. When β <1 we have from Eqs. (4.10-3), (4.12-4)-(4.12-6)

U y c y i y± ±= ( )( ˜) Ai[ ˜] Bi[ ˜]m (5.7-17)

where c±  are complex constants obtained from matching this Airy function
solution and its derivative at the boundary r r= 0  with the incoming and
outgoing wave forms applicable on the other side of the boundary. The
argument of the Airy functions is given by
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ρ β
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(5.7-18)

These forms also apply in a super-refracting medium where β >1. Also, it is
easily shown that in an Airy layer
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The quadratic term is negligible and it is dropped. Note that ρ ρ0 0= ˜ . It follows
that the arguments of the Airy functions are related by

ˆ ˙ ˜ /y
K

l y= −( ) = −1
1

0

2 3

ρ
ρ β (5.7-20)

From Eq. (5.7-17) it follows that the phase ψ l
A−

 of the incoming Airy
function solution (for β <1) is given by

ψ l
A y

y

−
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+−tan
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constant1 (5.7-21)

Similarly, by expressing an incoming spherical Hankel function ξ ρl
− ( )  in terms

of its Airy function asymptotic form, its phase is given by
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H y

y

−
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+−tan
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constant1 (5.7-22)

The difference ψ ψl
A

l
H− −

−  is the phase accumulation in the l th  spectral

coefficient al
− ( )ρ  for an Airy layer. We denote this phase of the spectral

coefficient by the function ϑ ρ ψ ρ ψ ρl l
A

l
H− = −

− −
( ) ( ) ( ). Taking the derivative

∂ϑ ∂ρl
− / , we obtain
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We note that ∂ϑ ∂ρl
− /  rapidly approaches zero for increasing ŷ > 0 .

We compare this expression with ∂ ρ ν ∂ρG[ , ] /  given in Eq. (5.7-9). For
negative ŷ  we replace the Airy functions in Eq. (5.7-23) with their asymptotic
forms. Then, using Eq. (5.7-20), we obtain
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Whereas, from Eq. (5.7-9) ∂ ρ ν ∂ρG[ , ] /  becomes

∂
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d
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These asymptotic forms are identical for decreasing ŷ < 0 .

Eq. (5.7-23) for ∂ϑ ∂ρl
− /  applies only to an Airy layer, but it is essentially

exact and it applies without restriction on the value of ŷ . On the other hand,
∂ ρ ν ∂ρG[ , ] /  obtained from Eq. (5.7-9) is a general form applying to any
physical profile for n r( ) , but it fails for increasing ŷ > 0 . Clearly, we have a
potential match made in heaven. Over the troublesome interval, say beginning
at ŷ > −2 , we can use the form for ∂ϑ ∂ρl

− /  given in Eq. (5.7-23). The range

− ≤ ≤2 2ŷ  corresponds to a spatial range of 4 601
0

k K− ≈ρ  m . Approximating

the index of refraction profile by a constant gradient ′n  should be fairly
accurate in most circumstances, especially since the phase variability is rapidly
dying out with increasing ŷ > 0 .

If a single Airy layer is not sufficient, then we can form a concatenated
series of Airy layers near a turning point. Any physical refractivity profile can
be approximated by a series of Airy layers. In this case β  and ỹ  would be
discontinuous according to Eqs. (5.7-18) and (5.7-20) across each boundary
between Airy layers (see Section 4.7). Applying the continuity conditions to the
wave functions and their derivatives across each boundary ties the Airy
function solutions together for the different layers, which enables one to derive
the phase in any layer. For a given spectral number, whenever one reaches
downward through successive Airy layers to a radial distance ρ ρ ν< †( ) , ỹ

will become positive there and ∂ϑ ∂ρl
− /  for that Airy layer rapidly approaches

zero for increasing ŷ > 0 .

Figure 5-7 shows two comparisons of ∂ϑ ∂ρl
− /  and ∂ ρ ν ∂ρG[ , ] /  versus ŷ .

In panel (a) the refractivity profile corresponds to dry air at sea level. But in (b)
a rather hefty value of β = 0 9.  has been used, hardly thin atmosphere material.
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5.7.3 Behavior of the WKB Solution at a Turning Point

The phase of a wave approaches a constant value as a function of ρ  below
a turning point. Its behavior can be quantified by examining the WKB solutions
to the radial wave equation in Eq. (5.3-5), which are given in Eq. (5.3-10) with

f u n u l l ul ( ) ( ) /= − +( )2 2 21 . The incoming and outgoing WKB solutions,

W ul
− ( )  and W ul

+ ( ) , can be linearly combined to yield in the fl < 0  regime
where ρ ν<  an exponentially damping solution for decreasing ρ ν< , and also
an exponentially increasing solution. Using the connection formulas [6]
between the WKB solutions for these two regimes, ρ ν<  and ρ ν> , we have
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where ϕ  is an arbitrary phase that is not too close in value to −π / 4 1. For
f ul =  and ϕ π= + / 4 , these are the leading terms of the asymptotic forms for

the Airy functions of the first and second kind.
It follows that one solution to the wave equation is exponentially increasing

for decreasing ρ ν< , and the other is exponentially damping to zero. The

asymptotic form of the incoming wave, Ul
− , in the ρ ν<  regime is a linear

combination of these two exponential solutions. Therefore, the phase of Ul
−

must approach a constant value with decreasing ρ ν< . The Airy layer analysis

just discussed shows that the phase of Ul
−  rapidly approaches a constant;

therefore, ∂ ∂ρG /  must rapidly approach zero. Expanding fl  in powers of

                                                  
1 The arrow in each of these two connection formulas indicates the applicable direction
of information transfer. For example, continuing the exponentially damping solution in
the f < 0  regime into the f > 0  regime leads to a stable sinusoidal solution in that
regime with “twice” the amplitude and a phase offset of −π / 4 . But the reverse can not
be guaranteed. Inaccuracy in the numerical computation of the solution to the wave
equation starting in the f > 0  regime and integrating downward into the f < 0  regime,
even with the phase set equal to −π / 4  exactly, leads inevitably to a numerical solution
that blows up for decreasing ρ ν< .
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u uo−  and setting n u lo o = , leads to f y K y Kl o o
= − + [ ]ˆ / O ˆ /ρ ρ

2 2 2
. The

exponential terms in the WKB solutions become exp ˆ //±( )2 33 2y . For ŷ = 2  the
ratio of their amplitudes is about 100:1; for ŷ = 3 it is 2000:1.

5.7.4 Setting G[ , ]ρ ν  for ρ ≤ ρ ν†( )

In the sequel, we have taken a simpler approach, in view of Eq. (5.7-6) and
also the very close agreement between dG dρ ν ν ν†( ), /[ ]  and ˜ ( , )α ν ν . We let

G[ , ]ρ ν  run its course based on Eq. (5.7-2) for ρ ν ρ†( ) ≤ < ∞. It has a

stationary value at ρ ρ ν= †( ) . Then we set G G G[ , ] ( ), ( )† †ρ ν ρ ν ν ν= [ ] =  for

ρ ρ ν≤ †( ) , a constant value for a given value of ν . In summary, we modify
Eq. (5.7-2) as follows
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Also, we have
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This arrangement, which involves some approximation (see Figure 5-7), also
simplifies and clarifies the strategy for matching the incoming and outgoing
spectral coefficients to eliminate the Hankel function singularity at the origin.
We discuss this further in Section 5.8.

5.8 Spectral Representation of an Electromagnetic
Wave in a Spherical Stratified Medium

We will need to distinguish between an incoming region in the medium and
an outgoing region. Figure 5-8 provides an example of the simplest topology
for these regions. The boundary between these regions is given by the locus of
points ( , )* *r θ , which defines the turning point for each ray, where for a
spherical symmetric medium E rθ θ( , )* * = 0 . In geometric optics
θ π α ρ ρ* * */ ˜ ( , )= −2 , which is obtained from Eq. (5.6-5). By “incoming” we
mean the field at any point where the Poynting vector S E H= ×c( ) / 4π  for the
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wave is such that S r⋅ < 0 . For the simple topology shown by Figure 5-8, for
example, the incoming region includes any point with a radial position r  and
an angular position θ  that satisfies the condition θ θ π* < < .

When the profile of the refractivity gradient has reversals in polarity, these
regions may not be so simply connected. When a scattering surface is present,
one could obtain both incoming and outgoing waves at the same point.
Figure 5-9 sketches a more complicated refractivity profile that also produces
coincident incoming and outgoing waves in certain regions.

We first develop the spectral coefficients for the pure refraction case and
we assume that no scattering surfaces are present in the medium. Scattering or
diffraction occurs where sharp changes in gradient or discontinuities in the
refractivity occur. We will deal with those cases later. In particular, we assume
that n r( )  and its derivatives are continuous throughout the medium and that the
simple topology of the kind shown in Figure 5-8 applies.

Let us evaluate the electric field vector E( , )r θ  at a point within the
refracting medium in terms of its incoming and outgoing spectral coefficients.
We assume that the planar asymptotic boundary condition applies to the
approaching wave and, therefore, al

−  is obtained from Eq. (5.5-21). The proper

functional form for al
+  is more problematical and we defer that to later in this

section. From Eqs. (5.3-6), (5.5-2) and (5.5-8) we have the following spectral
representation for the in-plane (φ = 0 ) radial and transverse components of the
electric field for the TM wave
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Because of the enormity of ρ  and of l  from where essentially all contributions
to these summations originate, we can replace these summations by integrals,
which are given by
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A similar set holds for the magnetic field. In the limit as n assumes a constant
value throughout the medium, a a al l l

+ −→ → , and Eq. (5.8-1) reduces to the
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collimated form in Eq. (5.5-1) with a i l l ll
l= + +−1 2 1 1( ) / ( ) , as it must. Also,

using stationary phase arguments we will show later that in the incoming region
well away from a turning point only the al l

− −( ) ( )ρ ξ ρ  term contributes

significantly to the scattering integral; in the outgoing region only the al l
+ +ξ

term contributes. Only for points very near a turning point must we include
contributions from both spherical Hankel functions. This means that except
near a turning point, we may replace the terms al l

± ±ξ / 2  with al l
±ψ  for

computational purposes, which decays to zero rapidly with increasing l > ρ .

5.8.1 Behavior of ∂ ∂G / νν

The spectral representation for the electric field in Eq. (5.8-1b) involves
integrals over spectral number. To evaluate these integrals using the stationary
phase technique as an aid, we need to find those spectral neighborhoods where
the phase accumulation of the integrands is stationary. In this regard, we study
the variability of G[ , ]ρ ν  with spectral number, ∂ ∂νG / , in terms of the
refractivity profile that determines it. We first look at ∂ ∂νG /  for two different
refractivity profiles. Both examples adhere to the thin atmosphere assumptions.
For Case a), n is exponentially distributed so that d drα /  is monotonic
negative with altitude; therefore, no multipath nor shadow zone situations arise.
For this case ∂ ∂νG /  has already been shown in Figure 5-4. In Case b), n has a
Gaussian distribution; multipath, shadow zones and caustics are prominent
features for this distribution. These two profiles for the index of refraction are
given by

a)  exp / ,  

b)  exp /

n N H

n N H

o o

w w w

= + − −( )[ ]
= + − −( )[ ]







1

1 2
2 2

ρ ρ

ρ ρ
(5.8-2)

Case b) is useful for study of spherical shell structures embedded in an ambient
profile such as that given by Case a). Case b) could be used to describe the
refractivity profile of a sporadic E layer in the ionosphere or a marine layer in
the lower troposphere. Case a) can be used to describe the Earth’s refractivity
profile for dry air, and the values used for No  and H  in these examples

correspond roughly to dry air refractivity ( No = × −270 10 6 ) and scale height

( k H− =1 7 km ) at sea level. For computational convenience we now have
written these refractivity profiles in terms of ρ ρ= krn( ) , i.e., r  is an implicit
function of ρ 2.

                                                  
2 The extraction of n given a value of u kr=  through iteration of Eq. (5.8-2) is
cumbersome because ρ ρ= un( ) . However, this form for an exponential distribution in
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For the exponential refraction profile given by Case a), it can be shown
using the thin atmosphere assumption in the defining path integral for ˜ ( , )α ρ ν
given in Eq. (5.6-2) (see also Appendix A, Eq. (A-30), that ˜ ( , )α ρ ν  is given by

˜ ( , ) ˙ ( ) ,  α ρ ν ρ πρ ρ ν
ρ

ν ρ= −( ) − −



















 <n

H H
1

2
1

2

2 2

erf (5.8-3)

where n( )ρ  is given by Eq. (5.8-2a). This expression is very accurate when
compared to the value from the path integral in Eq. (5.6-2). For the decreasing
exponential distribution given in Eq. (5.8-2a) the difference is less than 1% for
dry air. Eq. (5.8-3) accounts for both the first and second order ray path
bending effects when the refractivity profile in Eq. (5.8-2a) is used. For the dry
air component of the Earth’s atmosphere the first order bending term
( 2 1−( ) ′un n/ ) contributes less than 10% of the total. The second order ray
path bending effect for dry air at sea level amounts to roughly 1% of the total.

Figure 5-10 shows the variation of ∂ ∂νG /  with ν  while holding ρ  fixed
for Case a). It was obtained from the integral in Eq. (5.7-7). For ν ρ<  we have
already noted from Eqs. (5.6-2) and (5.7-8), and from Figure 5-4, that
∂ ∂ν α ρ νG / ˙ ˜ ( , )= , which holds very accurately for all values of ν  nearly up to
ν ρ= . Numerical integrations of ∂ ∂νG /  from Eq. (5.7-7) and ˜ ( , )α ρ ν  from
Eq. (5.6-2) show for both Cases a) and b) microradian level agreement when

                                                                                                                           
terms of ρ  has some advantages. It results in the very simple form for ˜ ( , )α ρ ν  given in
Eq. (5.8-3), which closely agrees with the numerical integration version for ˜ ( , )α ρ ν
given in Eq. (5.6-2). Provided | / |un n′ < 1, there is a unique relationship between u
and ρ . Eq. (5.8-3)) includes the effects of second order ray path bending in the path
integral in Eq. (5.6-2). When a positional exponential form is used instead,
n u N u u Ho o u( ) exp[ ( ) / ]= + − −1 , the form for ˜ ( , )α νu  requires a series in powers of

( / )un n′  to account for higher order ray path bending. This has been discussed in
Appendix A. For a given value of scale height H Hρ = , the version in Eq. (5.8-2a)

gives a smaller radial gradient than the positional exponential version (about 20% less
for dry air at sea level). This is seen by noting that for the two versions of the
exponential distributions, one obtains for dry air at sea level:
H H d n d d n d u d u d n nu / ˙ ( log / log ) ( log / log ) log / log / .ρ ρ ρ ρ= = = − ′ ≈1 1 2 .

One can adjust the values of the parameters No  and H in Eq. (5.8-2a) to attain a close,

but not exact, match with the profile from the positional exponential form; also, the
bending angle profiles from the two versions can be matched rather closely.

For near-super-refractivity situations where un n′ → −/ 1, then the functional
form n( )ρ  becomes inconvenient because dn d n un/ /( )ρ = ′ + ′ → ∞1 . But the
defining integral for G[ , ]ρ ν  readily allows a change of variable to u .



Propagation and Scattering 377

the inequality ν ρ ρ− < −~ 2K  and the thin atmosphere assumptions are

satisfied.
The three curves for ∂ ∂νG /  in Figure 5-10 correspond to three different

radial positions which are defined, respectively, by ρ ρ− =o H H0 2, / , , and
ρ ρ= un( ) . The dashed curves in Figures 5-10 and 5-11 mark the value of
∂ ∂νG /  for ν ρ ρ= +* ˆ†

*
y K  as a function of ρ* , which is a stationary point for

G[ , ]*ρ ν .  We have shown that  at  this stat ionary point
dG d G/ / ˙ ˜ ( , )ν ∂ ∂ν α ρ ρ= =  with high accuracy, where ˜ ( , )α ρ ρ  is given from
either Eqs. (5.6-2), or for Case a) from Eq. (5.8-3) also.

Figure 5-11 shows the resulting curves for ∂ ∂νG /  obtained from the
integral in Eq. (5.7-7) when the Gaussian refractivity profile in Eq. (5.8-2b) is
used. If this profile also is applied in Eq. (5.6-2) to obtain ˜ ( , )α ρ ρ , a bipolar
refractive bending angle profile results, which is shown in Appendix E,
Figure E-1, and also as the dashed curve in Figure 5-11. The bending angle
profile mimics the shape of dn d/ ρ  but it is modified to reflect the geometry of
a ray transecting a spherical shell. The intersection of the ∂ ∂νG /  curve with
the ˜ ( , )α ρ ρ  curve in Figure 5-11 also occurs very near the point ν ρ ρ= + ˆ†y K .

The point where the polarity change occurs for ∂ ∂νG /  at its initial break point
depends on the location of the center of the Gaussian distribution relative to ρo.
For ρ ρw o<  the initial break is negatively directed, but for ρ ρ< w  the slope of
n( )ρ  becomes negative and ∂ ∂νG /  will then break positive. Physically, this
regime where the variability of G[ , ]ρ ν  approaches zero, see
Eqs. (5.7-26)-(5.7-28), corresponds to the Gaussian layer being located below
the level, ρ νo = ; the layer can not be “sensed” by a ray with an impact
parameter ν ρ> o . We will show later that there are no stationary phase points
in spectral number for this regime.

5.8.2 Accuracy of the Osculating Parameter Technique

To check the accuracy of the spectral representation used in this section, as
given in Eq. (5.8-1), we again use the Airy layer model for a refracting medium
with spherical stratification. We embed this layer in an otherwise homogeneous
medium. These analytic solutions can be compared with the osculating
parameter and numerical solutions. We let

n n n
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kn r kn r n

A A A
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A A A A A A
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(5.8-4)
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Here ρ̃ ρ= A  marks the upper boundary of the Airy layer, and nA  is the value
of the index of refraction there. From Sections 4.10 and 4.11 we know that the
wave equations for this case are given by

d U

d

n

n

l l
U V i

d U

d
l

A
l l

l
2

2

2

2
1

0
˜

˜
( )

˜
˜ ,   ˜

˜

˜
ρ
ρ ρ

ρ ρ
ρ
ρ

( ) + 




− +





( ) = = − ( )

(5.8-5)

U( ˜ )ρ  describes the field along the normal to the plane of propagation (the
y -direction in Figure 4-10). For a given value of l , U( ˜ )ρ  also provides the
radial spectral component of the electric field, and V( ˜ )ρ  describes the
tangential component parallel to the plane of stratification and in the plane of
propagation (the θ – direction in Figure 4-10).

This model has been discussed in Section 4.12 where a correspondence
between spherical and Cartesian stratification was established, and also in
Section 5.7 to obtain an asymptotic form for G[ , ]ρ ν  valid for ν ρ> . There the
solutions to the wave equations in Eq. (5.8-5) are given to a good
approximation by the Airy functions with their argument ỹ  given by
Eq. (4.12-5). Thus, in the medium described by Eq. (5.8-4) for r rA≤ , we have
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For the region r rA>  the solutions are the spherical Bessel functions of the first
and second kinds ψ ρ χ ρl l( ˜ ), ( ˜ ) . We note here that nA  is a constant in the Airy
layer. Hence, − = =β ρ ρ( / ˜ ) ˜ / ( / ) /dn d n dn dr r n .

At the boundary r rA=  we must match these two solution sets for each
integer value of l  to ensure the continuity of the tangential components of the
electromagnetic field across the boundary. We first match the solutions when
the Ai[ ˜]y  solution applies in the region r rA≤ , that is, the solution that vanishes
for decreasing ρ̃  with ρ̃ < l . Upon noting from Eq. (5.8-6) that

∂ ∂ρ β ρ˜ / ˜ //
˜y KA A

= − −1 1 3  (with βA <1), we set

Ai ˜ ˜ ˜ ,

Ai ˜ ˜ ˜
˜

/

y c d

K y c d

A l l A l l A

A A l l A l l A
A

[ ] = ( ) + ( )
− −( ) ′[ ] = ′( ) + ′( )






−

ψ ρ χ ρ
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ρ

1 1 31
(5.8-7)
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Using the asymptotic forms for both the spherical Bessel functions and the Airy
function for − >>ỹ 1 and for − >>ŷ 1, we obtain values for the matching
coefficients that are given by
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Here ỹ  is given in Eq. (5.8-6) and ŷ  is given by Eq. (5.4-3). Their ratio ˆ / ˜y y  is

equal to 1 2 3− βA
/ .

Similarly, for a Bi[ ˜]y  solution in the region r rA≤ , that is, the solution that
blows up for decreasing ρ̃  with ρ̃ < l , we set
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When the asymptotic forms apply, that is, at a location well away from a
turning point, we obtain
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Referring to our discussion in Section 4.6 on incoming and outgoing waves
in a Cartesian Airy layer, it follows in this case that outgoing and incoming
waves at the boundary can be expressed in the form

Ai ˜ Bi ˜y i y c idA A l l l A[ ] [ ] = ( ) ( )±m m ξ ρ (5.8-11)

The top sign applies to an outgoing wave, and the bottom sign to an incoming
wave. Also, the complex coefficients c idl lm( ) provide the phase delay (modulo

2π ) between the incoming and outgoing waves at the boundary due to the
refracting medium below. This phase delay offset remains invariant for r rA>
because the medium is taken to be homogeneous for r rA≥ . From Eqs. (5.8-8)
and (5.8-10) it follows that the ratio
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c id

c id
i X Xl l

l l
l l

−
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= −( )( )exp ˜ ˆ2 (5.8-12)

provides the round-trip phase delay between the incoming and outgoing
wavelets of spectral number l  at the boundary r rA= . From Eqs. (5.8-6) and

(5.8-8) and noting again that in the Airy layer ˆ / ˜ /y y A= −1 2 3β , it follows that
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We return to this expression momentarily after discussing the form of G[ , ]ρ ν
for this model of the refracting medium.

Now we use the osculating parameter technique in the spectral
representation given in Eq. (5.8-1) to describe the wave in the refracting Airy
medium where r rA≤ . The basis functions are the spherical Hankel functions

ξ ρ ξ ρl l
+ −{ }( ), ( ) , where ρ = knr  and n now is variable and given by Eq. (5.8-4).

For a given spectral number the form for the radial term from Eq. (5.8-1) is
given by

         a a C iG iGl l l l l l l
− − + + − += − +( )ξ ξ ρ ν ξ ρ ρ ν ξ ρ+ exp( [ , ]) ( ) exp( [ , ]) ( ) (5.8-14)

Here Cl  is a spectral number-dependent complex factor that depends on
boundary conditions, which we will discuss later in regard to turning points; it
is not of interest here.

From Eq. (5.7-2) it follows that G[ , ]ρ ν  for an Airy layer is given by
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where Γ( ˆ) /y 3  is the integral of g y( ˆ)  given in Eq. (5.7-1). Γ( ˆ)y  has been
discussed in Section 4.9 with regard to osculating parameters in a Cartesian
stratified medium and it is given by Eq. (4.9-5). It is shown in Figure 5-12.
Γ( ˆ)y  has only the two roots shown in this figure and it is monotonic elsewhere.
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For a given value of l  in both Eqs. (5.8-13) and (5.8-15), what is the value
of ŷ  in Eq. (5.8-15), that is, what value for ρ  must we use to match the
round-trip phase delay −2G[ , ]ρ ν  with the asymptotically exact value of this

phase delay 2 ˜ ˆX Xl l−( ) , given from Eq. (5.8-13)? Noting that n is variable in
Eq. (5.8-15), it follows from Eq. (5.8-4) that

1
1n

dn

d
A

A

Aρ
ρ β

β






= −
−

(5.8-16)

We see upon comparing Eq. (5.8-15) with Eq. (5.8-13) that ŷ  must be zero.
However, the negative argument asymptotic forms for the Airy functions do not
apply at ŷ = 0 ; instead, we must set Γ( ˆ)y = 0  in Eq. (5.8-15). This is discussed

in Appendix I, Eq. (I-11) with regard to relating dG d[ ( ), ] /†ρ ν ν ν  to ˜ ( , )α ν ν .
The roots of Γ( ˆ)y  occur at ˆ ˙ .y = −0 2  and +0 9. , and Γ( ˆ)y  reaches a stationary

value of almost zero at ˆ ˆ†y y= . It is nearly zero there compared to the value of

−( )ˆ /
yA

3 2  when − >>ŷA 1 (see Figure 5-12). Thus, we set ρ ρ ν ρ= = −† †K y  to

force a near-alignment of Eq. (5.8-15) with Eq. (5.8-13). The relative error of
this choice is Γ Γ( ˆ ) / ( ˆ ) .†y yA ≈ 0 001 for this example.

In Section 5.5, Eqs. (5.5-22) through (5.5-25), we discussed the spectral
coefficients al

+  for an outgoing wave in terms of G[ , ]ρ ν . The equation for al
+

involved a constant of integration al
+[ , ]* *ρ ρ . The question of the appropriate

value of ρ*  to use in this constant of integration was left rather moot in that

discussion. Here we set ρ ρ*
†=  and

a i
l

l l
iGl

l+ −[ ] = +
+

− ( )( )ρ ρ ρ ν† † †,
( )

exp ,1 2 1
1

(5.8-17)

This provides a rationale for setting ρ ρ ν= †( )  in 2G[ , ]ρ ν  for the outgoing
wave, at least when well away from a turning point so that ŷA < 0 . We will
return later to this question of linking the incoming and outgoing spectral
coefficients.

5.8.3 Numerical Comparisons

Although the close comparison between 2G ρ ν†,[ ] and c id c idl l l l−( ) +( )/
at the boundary of the Airy layer is encouraging, we should compare the
osculating parameter representation for the wave given in Eq. (5.8-14) with the
exact solution obtained from integrating the wave equations in Eq. (5.8-5).
Their level of agreement as a turning point is approached is particularly of



382 Chapter 5

interest. Figure 5-13 (a) shows the solution for Ul ( )ρ , which is the solution to
the wave equations in Eq. (5.8-5), and it also shows the osculating parameter
solution from Eq. (5.8-14). They are virtually doppelgangers over the range
shown for ŷ . In this example ν ρ= + = =l ko1 2 6400/ , ρA k= 6432 ,

k = −100 1km , ′ = × −n 1 56 10 4.  and no =1. The solution is closely approximated
by Ai[ ˜]y . It yields a single-sided bending angle at ρ ρ* = =o k6400  of
10 mrad, and this medium has a moderate ray path curvature index β  of about
0.1. The general procedure in Figures 5-13 through 5-16 for comparing these

solutions is as follows. For initial conditions, we set U yl ρ
† †Ai ˜( ) = [ ] and we

also equate their derivatives at this point. This generates a numerical solution
for Ul ( )ρ  that exponentially damps to zero for decreasing ρ  in the vicinity of
the turning point at ρ νo =  (but it blows up for ρ ρ<< o  because of limited
numerical precision). Then at ρ ρ= A , which in the example shown in
Figure 5-13 corresponds to a ŷ  value of about –50, we set

C a al l l l l
− − + +( )( ) ( ) ( ) ( )ρ ξ ρ ρ ξ ρ+  equal to the numerical solution for Ul ( )ρ  there

and also we equate their derivatives there. This sets the complex value of Cl  in
Eq. (5.8-14) and gives the osculating parameter solution for decreasing ρ .

Figure 5-13 (b) shows the difference between Ul ( ˜ )ρ  and the osculating
parameter form with the same initial conditions at the boundary r rA= . Here
G[ , ]ρ ν  is obtained from Eq. (5.5-20), integrated on ρ  over the Airy layer from
ρA  to ρ . In the osculating parameter solution for these two panels G[ , ]*ρ ρ
accumulates about 3 1/2 cycles between rA and r† , where r k n† † †/= ( )−1ρ ρ .
This accumulation of 3 1/2 cycles is required to keep the solution

C a al l l l l
− − + +( )ξ ξ+  in Eq. (5.8-14) aligned in phase with the exact solution Ul ( )ρ

over the entire Airy layer. Better than 1% numerical agreement holds between
solutions except very near a turning point. As expected, for ˆ ~y > −2  the
osculating parameter solution begins to deteriorate, but even at ŷ = 0  it still is
moderately accurate for this example; the difference is 0.007. The differential
equations in Eq. (5.8-5) become numerically unstable for ŷ > 0 . Any small
numerical errors in matching the boundary conditions or in the numerical
integration will magnify greatly in the region ŷ > 0 , that is, Bi[ ˜]y  begins
leaking into the numerical solution. See the discussion of the connection
formula for the WKB solutions in Eq. (5.7-26). Matching boundary conditions
closer to ŷ = 0 , for example, at ŷ = −5  improves the overall agreement, but the
osculating parameter solution still deteriorates rapidly for ŷ > 0 . But, the
numerical solution for Ul  also deteriorates for ŷ > 0  because of limited
precision.
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The wavenumber k = −100 1 km  used in Figure 3-13 is more than 300
times smaller than the wavenumbers of the GPS navigation signals. The smaller
value is used here to save computational time and to preserve computational
accuracy—for given values of rA and r*, the number of cycles in the solution
depends linearly on k . It is difficult to maintain coherency between solutions
by matching both the solution and its derivative at the same point for highly
oscillatory systems. The run-off error is roughly proportional to k . Small errors
in the computation of Ul  and G[ , ]ρ ν  lead inevitably to run-off. An alternate
matching strategy to reduce run-off is to pick two separate points and match
solutions there, but not their derivatives.

Figure 5-14 shows another comparison between the numerical and
osculating parameter solutions. Here a moderately strong refractivity gradient
has been used, leading to single-sided bending angle variations of more than
30 mrad over a tangency point altitude range of 8 km. Panel (a) shows the
profile of the refractivity change, and panel (b) shows the resulting bending
angle profile. In the lowest layer, ρ ρdn d/ .= −0 8 , which gives a ray path
curvature index of β = 4 9/ . But in the middle layer ρ ρdn d/ .= +0 8 , which
yields β = −4 , a rather extreme negative ray path curvature. Panel (c) compares

the two solutions, Ul ( )ρ  and a al l l l
− − + +( ) ( ) ( ) ( )ρ ξ ρ ρ ξ ρ+ . Here the radial

distance r  is used for the abscissa instead of ŷ  with a range of 8 km, and with

k = −400 1km . Per the discussion in Section 5.7 concerning Eqs. (5.7-25)
through (5.7-26), by forcing the osculating parameter solution to follow the
Airy layer solution for ŷ  values greater than ~ −2 , roughly 1/2 km above the

turning point for k = −400 1km  (~30 m for GPS wavelengths), one can greatly
improve the solution below the turning point, until the numerical solution itself
begins to fail.

Figure 5-15 compares the wave equation solutions for a severely refracting
medium that includes a super-refracting layer, 1 km thick in the range
r r rd u< < . The refractivity profile is shown in panel (a). Within the
super-refracting layer the ray path curvature index has a value of β = 2 . Above
the layer, β = 0 4. , and below, β = 0 3. . These refractive gradients lead to
enormous swings in the ray path bending angle. Panel (b) shows the resulting
single-sided bending angle profile versus tangency point radius, including the
super-refracting zone r r rc

u< <* . For tangency points within this range no rays
can occur when spherical symmetry applies. Panel (c) shows the variation in
impact parameter in the vicinity of this super-refracting layer. The impact
parameter has a negative slope within the layer. Panel (d) compares the wave
equation solutions. In this example the turning point is well below the critical
radius, i.e., r ro

c< . Good agreement holds except near the turning point. A

wavenumber value of k = −1000 1km  is used in Figures 5-15 and 5-16. The
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wave equation solutions in Figure 5-15 (d) show a slight amplitude bulge and a
slight reduction in frequency in the vicinity of the super-refracting layer, which
is expected. Referring to the WKB solution connection formulas in
Eq. (5.7-26), the amplitude and frequency factor expressed in length units is
f k y K yl ( ) ˙ ˆ / ˆρ ν= − ≈ − −2 2 246   km . When β <1,  ∂ ∂ˆ /y r < 0 ; but in a

super-refracting medium where β >1, then ∂ ∂ˆ /y r > 0 . It follows that
∂ ∂f rl / > 0  for r rd< ; but within the super-refracting layer, r r rd u< < ,
∂ ∂f rl / < 0 . For a turning point below the critical tangency point, i.e., for

ν < ( )kn r rc c , fl ( )ρ  remains positive for all r k n r> −1ν / ( ), but it becomes less
positive with increasing r  within the super-refracting layer, which is reflected
in the figure by the increasing amplitude ( ~ /1 4 fl ) and decreasing frequency

( ~ fl ) within the layer. Above the layer ∂ ∂f rl /  returns to positive territory.

When ν < ( )kn r rc c , the l th  spectral component of the wave powers through
the super-refracting layer, as shown in Figure 5-15 (d), just as the
cor responding  ray ,  wi th  an  impac t  pa ramete r  va lue
ρ ν* = ≤ ( ) = ( )kn r r kn r rc c

u u , also does, albeit severely refracted as

ρ* → ( )kn r rc c  from below.

As the ray path tangency point approaches the critical radius r rc
* = , the

bending angle approaches a limit, shown in panel (b), and the wave solution
shows a marked transition from an oscillatory form to an exponential form in
the vicinity of the layer. A delicate situation occurs when the turning point is

such that kn r r kn r rc c
d d

( ) ≤ ≤ ( )ν . Here fl ( )ρ  reverses sign at kn r r( ) = ν , with

the lower root to the equality lying in the range r r rc
u< < , and the upper root at

r ru> . In this case we have two zones where Ul ( )ρ  must be exponential-like: in
that region in and above the super-refracting layer where fl < 0 , and below the
turning point where fl < 0  again. Inasmuch as there are no rays for tangency

points in the range r r rc
u< <* , we expect the wave equation equations to give a

damped amplitude for the field.
Lastly, Figure 5-16 shows the case where the spectral number has been

increased (actually, the refractivity profile was lowered in altitude relative to a
fixed turning point) so that the spectral number lies in the range

kn r r kn r r kn r rc c
o o d d

( ) ≤ = ( ) ≤ ( )ν . These panels show the wave equation
solutions and the profile for ŷ . Panels (a) and (b) are for the case where

ν = ( ) = ( )kn r r kn r rc c
u u , the critical impact parameter value marking the

boundaries of the zone corresponding altitude range r r rc
u< <*  within which

no ray path tangency points may lie. Panels (c) and (d) are for the case where
the spectral number lies within the critical range kn r r kn r ru u d d( ) < < ( )ν , the
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equivalent of about 150 m in radial distance above rc  for k = −1000 1km .
Panels (a) and (c) were normalized so that the amplitudes of all of the wave
equation solutions in (a) and (c) have the same asymptotic value with
increasing r  well above the atmosphere. Here the agreement between Ul ( )ρ
and the osculating parameter solutions degrades significantly in the vicinity and
below the super-refracting layer because ŷ  becomes positive over a limited
interval about the upper boundary at r ru= . It also becomes positive again
below the turning point. Although the amplitudes of the two solutions diverge
below the layer, their phases remain aligned right down to the turning point.

A super-refracting layer acts like a second turning point when the spectral

number lies in the critical zone kn r r kn r rc c
d d

( ) ≤ ≤ ( )ν . We note from
Eq. (5.7-26) that the slightest hint of a positive value for ŷ  in the

super-refractive zone ( − = ≈f k y K yl ˙ ˆ / ˆν 7 ) causes Ul ( )ρ  to damp to
near-zero below the lower critical point where ŷ = 0 . The easiest way to see
this is to consider the reverse sense of propagation. Consider a solution for
Ul ( )ρ  that is forced to damp to zero below the turning point at ρ ρ= o . With
these initial conditions on Ul ( )ρ  and its derivative, the solution is then
propagated outward. When the region above the turning point where fl ( )ρ  first
becomes negative is encountered, the solution becomes exponential-like. This
causes the amplitude of Ul ( )ρ , which still has an Airy function-like character
(of the first kind) below this point, to be catapulted to an astronomical
magnitude if fl ( )ρ  remains negative for a sufficient interval3. But we have
normalized the asymptotic values of the outbound amplitudes to correspond to
the amplitude of an incoming wave, which is essentially invariant over the
narrow range of spectral numbers considered here. This forces the amplitude of
Ul ( )ρ  in the region below the lower point at which fl ( )ρ = 0  to be greatly
diminished when ˆ ˆ

MAXy yu=  is positive. In panel (a), ˆ ˙MAXy = 0 , and the
amplitude of Ul ( )ρ  below the layer is beginning to attenuate. But in panel (c),
ˆ

MAXy  is barely positive, 1.1, and fl ( )ρ  is negative only over a 40 m interval

                                                  
3 An easy refractivity model with which to see this amplification process is given by
′ = < − × − −n constant km 157 10 6 1 in the super-refracting layer r r r

d u
≤ ≤ , and ′ ≡n 0

elsewhere. The wave equation solutions are, below the layer: Ai[ ˆ]y , within the layer:
a y b yAi Bi[ ˜] [ ˜ ]+ , and above the layer: c y d yAi Bi[ ˆ] [ ˆ]+ . Equating these solutions and

their derivatives across their respective boundaries, at r r
d

= , and at r r
u

=  where

ˆ ˆ
max

y y= , leads to an explicit evaluation of the coefficients c  and d . It can be shown

that the amplitude | | ( ) exp( ( /( )) ˆ / )/ /

max

/c d y2 2 1 2 1 6 3 22 1 2 1 3+ → − −β β β , when ˆmaxy > 0 .

The extreme case ′ → −∞n  with ∆n  finite is addressed in Chapter 3 (Mie scattering
theory) and in Section 5.13.
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about r ru= . Already for these slight intrusions the amplitude of Ul ( )ρ  is an
order of magnitude diminished below the layer. For GPS wavelengths, ∆ŷ =1

corresponds to ∆r =14 m  and − ≈f yl 70 ˆ . Therefore, the cutoff in amplitude
of Ul ( )ρ  below a super-refracting layer for spectral numbers greater than the
limiting value yielding ˆ

MAXy = 0  is extremely sharp.
The lower point for r ru<  in the super-refracting layer where ŷ = 0  is also

the first point where the bending angle integral for a hypothetical ray with an
impact parameter value of ρ ν* =  would become complex, if such a ray were to
exist. Here kn r r( )  becomes smaller than ρ*  for increasing r  above this point
until the upper point where ŷ = 0  is reached at r ru< .

A better approximation approach (but not used here) for the osculating
parameter solution to obtain closer alignment with Ul ( )ρ  in and below the
super-refraction zone is to break the spherical medium into regimes. These are
designated by the Roman numerals in panel (d), which have boundaries in the
radial coordinate r  at the points where ŷ ≈ −2 . In I and IV the osculating
parameter solution applies because ŷ < −2  throughout these regimes. In the
tunneling regimes, II, III and V, the refractivity profile is approximated by an
Airy layer, each of which has a wave equation solution given by Eq. (5.8-6).
Since ŷ  need not be too positive before the solution below the layer is
essentially damped to zero, this Airy layer approximation should be valid. The
coefficients of these different solutions are tied together by using the continuity
conditions on the solutions and their derivatives across each boundary; these
boundaries are marked in (d). The amplitude of the osculating parameter
solution in IV will then damp to zero rapidly below the layer, which Ul ( )ρ  also
does, except for spectral numbers in the transition zone where ˆ

MAXy ≈ 0 . On the
other hand, in region IV below the super-refraction zone, G[ , ]ρ ν  contains valid
phase information because ˆ ~y < −2 .

In summary, Figures 5-13 through 5-16 show good agreement between the
exact and osculating parameter solutions over almost all regions except those in
the immediate neighborhood of a turning point or in that delicate transition

across the critical spectral number range ν ≈ ( )kn r rc c , below a super-refracting
layer. Here ˆ

MAXy ≈ 0 , but not yet positive enough to rapidly damp Ul ( )ρ  to
zero below the layer. In calculating the electric field from the integrals over
spectral number that are given in Eq. (5.8-1b), Section 3.16 shows that the
principal contribution to these integrals comes from a neighborhood in spectral
number where the phasor in the integrand is varying the least. This is a
stationary phase neighborhood, which may or may not be unique, depending on
the refractivity profile. If the field is being evaluated at an incoming point well
away from a turning point, then a stationary phase neighborhood will not be
located near ŷ = 0 , but rather in negative territory. Therefore, except for



Propagation and Scattering 387

incoming positions near a turning point, we expect the accuracy of the
osculating parameter technique applied to the spectral integrals in Eq. (5.8-1b)
to be adequate. Moreover, near a turning point one can use the Airy layer
approximation to greatly improve the accuracy there, which is discussed in
Section 5.11. The issue of outgoing points remains, and it is discussed later.

5.8.4 Comparison of Phase Delays in an Airy Layer from Wave
Theory and Geometric Optics

According to geometric optics, the single-sided phase delay for an initially
collimated incident ray with an impact parameter ρ ρ* ≤ A  is given by

ck k
n rdr

n r n r

d n

d
d

r

rA Aτ
ρ

ρ ρ ρ

ρ ρ ρ α ρ ρ α ρ ρ

ρ

ρ
=

−
= − − +
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The second equality follows from integrating by parts and using Eq. (5.6-2) for
the bending angle. Using Bouguer’s law, we see that the bottom line simply
equals ρ θ αA Acos sec( ˜ )∆  through second order in ∆ ˜ ˜ ( , )* *α α ρ ρ= − ˜ ( , )*α ρ ρA .
Therefore, the extra single-sided phase delay caused by the refractive gradient
for a ray with an impact parameter ρ ρ* ≤ A  is given by
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d

r r

r

A A

A
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ρ ρ ρ β ρ
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The approximate expression on the RHS applies to the Airy layer model and it
is accurate when thin atmosphere conditions apply and r* / λ >>1 (See
Appendix A). This expression also gives about 3 1/2 cycles for the conditions
shown in Figure 5-13 and it matches the phase delay expression given in
Eq. (5.8-13).

Eq. (5.8-13), which is an asymptotically exact result for an Airy layer,
Eq. (5.8-15), which gives G[ , ]ρ ν  from use of the osculating parameter
technique, and Eq. (5.8-19), which is from geometric optics, all essentially
agree on the phase induced by the refractive gradient on a wave passing through
the Airy layer. We return to this model in Section 5.11 where calculating the
field at a turning point is discussed.

Eq. (5.8-19) provides us with further insight into the character of G[ , ]ρ ν .

When ν ρ*
*= , G[ , ]*ρ ρ  provides the extra path delay for a ray with an impact

parameter value of ρ* , both from the curvature component of the ray that is
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induced by the refractive gradient and from the change in wave velocity along
the ray in the medium.

5.8.5 Asymptotic Matching the Spectral Coefficients for Incoming
and Outgoing Waves

Let ( , )* *r θ  mark a turning point and ρ* * *= kr n  is the impact parameter
associated with the ray passing the turning point. We know from Bouguer’s law
for a spherical symmetric medium that ρ*  is a constant when evaluated along
that ray path.

When the planar asymptotic boundary conditions apply to the approaching
wave, then the incoming spectral coefficient al

− ( )ρ  is uniquely determined
from Eq. (5.5-21). It is independent of the impact parameter ρ*  associated with

the point ( , )r θ  at which al
− ( )ρ  is evaluated because the asymptotic boundary

conditions in Eq. (5.5-3) for a planar approaching wave are independent of
impact parameter. Because the wave front surface is not symmetric about the
turning point boundary (the approaching waves are collimated prior to
impacting the medium; the departing waves are dispersed), the outgoing
coefficient depends on the value of ρ* . For the outgoing wave it follows from

Eq. (5.5-23) that we can obtain al
+[ , ]*ρ ρ  if we know the value of al

+[ , ]*ρ ρ .
Consider first the symmetric problem mentioned earlier where the

electromagnetic wave is planar along the line θ π= / 2 , φ = 0 , i.e., along the
x axis in Figure 4-10. From Bauer’s identity in spherical coordinates we have
along the x-axis

1 2 1 0
1

= + 



=

∞

∑ i ll l
l

l

( )
( )

P ( )
ψ ρ
ρ

(5.8-20)

which holds for all values of ρ . As the wave propagates away from the line
θ π= / 2 , which is along the x axis, the cophasal normal path in the plane φ = 0
will depend on its initial position ρ  along the x axis from which it started.
Thus, for every value ρ ρ= * , the spectral coefficients must have the form

a i
l

l l
i G Gl

l± −= +
+

± −( )( )[ , ]
( )

exp [ , ] [ , ]* *ρ ρ ρ ν ρ ν1 1
1

2
(5.8-21)

Using these forms for the spectral coefficients in the scalar potentials given in
Eq. (5.8-1), it is readily shown with the Helmholtz equation in Eq. (5.2-6) that
the radial component of the electric field is invariant along the x axis, and given
by the RHS of Eq. (5.8-20).

To convert this symmetric form for the electromagnetic wave into a
non-symmetric form, that is, the version where the wave is asymptotically
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collimated on the incoming side (π θ θ> > *), we merely multiply both al
−  and

al
+  in Eq. (5.8-21) by exp [ , ]*−( )iG ρ ν  (thus preserving their equality at
ρ ρ= * ). We will show later that this is equivalent to rotating clockwise each
cophasal normal path by the angle ˜ ( , )* *α ρ ρ , where ρ*  is the impact parameter
of the path. For this case as ρ→∞

a i
l

l l

a i
l

l l
iG

l
l

l
l

− −

+ −

→ +
+

→ +
+

−( )



















→ ∞

1

1

2 1
1

2 1
1

2

( )

( )
exp [ , ]

,  

*ρ ν
ρ (5.8-22)

The question arises as to what value to use for ρ*  in these expressions in

either Eq. (5.8-21) or Eq. (5.8-22). Consider the variability of al
− ( )ρ  with ρ

for the collimated case when the spectral number is set to a fixed value νo . At a
point ( , )r θ  on the approaching side at large distances where n→1 we set
ν θo kr= sin ; that is, νo  becomes the impact parameter for the cophasal normal

passing through the point ( , )r θ . From Eq. (5.5-21) the evolution of al
− ( )ρ  with

v while travelling along this particular ray path can be obtained by studying the
behavior of G[ , ]ρ ν  with ν  fixed. Figure 5-6 shows an example of G oρ ν,[ ]
versus ρ  in the close vicinity of ρ ν= o . G[ , ]ρ ν  has a stationary value at

ρ ν ρ= −o y Kˆ† , where ˆ†y  is given by Eq. (5.7-10). This point marks a

stationary phase point for al
− ( )ρ  (and for al

+ ( )ρ ) with respect to ρ . We know
that the forms for G[ , ]ρ ν  given in Eq. (5.5-20) or in Eq. (5.7-2) begin to fail
for increasing ŷ > 0 , and that the correct form for G[ , ]ρ ν  rapidly assumes a
constant value. Figure 5-7 shows a comparison between the exact phase rate
∂ϑ ∂ρl

− /  and ∂ ρ ν ∂ρG[ , ] /  for an Airy layer.
Consistent with the approximation chosen in Eq. (5.7-27) for G[ , ]ρ ν , we

set a al l
+ −=  at this point ˆ ˆ†y y=  to ensure no singularity at the origin from the

Hankel functions and to attain a close match with the refractive bending angle.
Note that this stationary phase point in ρ  space varies with the value of νo . At

this stationary point, ρ ρ ν ν ρ
† †

†
†( )= = − K y , we set

a a i
l

l l
iGl l

l+ − −[ ] = ( ) = − [ ]( )ρ ρ ρ ρ ν† †, exp ,† †1 2 1
1

+

( + )
(5.8-23)

This is exactly the same form for al
+[ , ]* *ρ ρ  that we obtained in Eq. (5.8-17) at

the boundary of an Airy layer to force alignment between the roundtrip delay
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obtained from the osculating parameter technique with the roundtrip delay from
the Airy layer solution. Here G[ , ]ρ ν  would include the delay from the Airy
layer and from the overlying medium. Of course, our Airy layer can be made as
thin as we please relative to the extent of the overlying medium. Thus, we
asymptotically match the incoming and outgoing spectral coefficients.

From Eq. (5.5-23) it follows that al
+ ( )ρ  is given by

a a i G G

i
l

l l
i G G

l l

l

+ +

−

= [ ] − [ ]−( ) =
− [ ]−( )
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2
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(5.8-24)

At the LEO, which is located at rL L,θ( )  and assumed to be outside of the

refracting medium where n ≡1, the second term in Eq. (5.8-24) is zero, that is,
G ρ νL ,[ ] ≡ 0 . It follows that

a i
l

l l
i G y Kl

l+ −( ) = − [ ]( ) = − 



ρ ρ ν ν ρ ν ρL
† †

†exp ( ), ,   †1 2 1
1

2
+

( + )
(5.8-25)

Thus, − ≡ − [ ]2 2G G† †( ) ( ),ν ρ ν ν  is the two-way phase accumulation of the l th
spectral coefficient from the stationary point ρ ρ† † †= ( )kr n  to outside of the
refracting medium. It corresponds in geometric optics to the extra phase
accumulation induced by the refractivity gradient while travelling along a ray
that has completely transected the atmosphere and that has an impact
parameter value of ν .

We will show later that the value of ν  that yields a stationary phase in the
wave theory spectral representation in Eq. (5.8-1) is essentially equal to the
value of the impact parameter for the ray passing through the LEO provided
that the inequality ρ ρ α ρ ρ* * * *| / | ˜ ( , )d n d2 2 <<  is satisfied. The latter value is
given from Bouguer’s law by

ν ρ θ α ρ= = = +( )* * * *L L Lsin ( )kr n kr (5.8-26)

where α ρ α ρ ρL ( ) ˜ ( , )* * *= 2  is obtained from Eq. (5.6-5). When multipath
situations occur, this value may not be unique; we will discuss that later. It
follows that the stationary point for the spectral number in wave theory is given
by

ν ν ρ ρ= = +†
* ˆ†

*
y K (5.8-27)

A continuing issue for outgoing points concerns the accuracy of the
adopted form in Eq. (5.7-27) for G[ , ]ρ ν , and therefore, the accuracy of



Propagation and Scattering 391

− [ ]2G ρ ν ν†( ),  in representing the round-trip phase delay. Because of the failure

of the osculating parameter technique for decreasing ρ ρ< † , this adopted form
has some error. But the adopted form for G[ , ]ρ ν  does have a stationary value

at ρ ρ= † , and the correct form must rapidly approach a fixed value for ρ ρ< †

(see Figure 5-7). In addition, we have already noted in Section 5.7 the close
correspondence between G ρ ν ν†( ),[ ] and the component of the phase delay in
the eikonal equation induced by the refractivity gradient for a ray with an
impact parameter value of ν . Also noted there and in Appendix J is the high

accuracy of the relationship, dG dρ ρ ρ ρ α ρ ρ* * * * * *
†( ), / ˙ ˜ ( , )[ ] = , provided that the

curvature in the refractivity profile is moderate. In this section, the close
comparison between − [ ]2G ρ ν ν†( ),  and the exact solution for the round-trip
phase delay in an Airy layer has been noted. Moreover, a byproduct of the
numerical solutions presented in Figures 5-13 through 5-16 (along with the
second numerical solution for Ul ( )ρ  with the boundary conditions generated

from Bi ˜†y[ ]) is the exact value of the extra phase delay induced by the

refractivity gradient of the medium. G ρ ν ν†( ),[ ], based on Eq. (5.7-27) and
calculated from Eq. (5.7-2), may be directly compared to this numerical result
for the different refractivity models assumed in these examples. The agreement
is generally in the range 0.5-0.1% when the curvature index β  is not too close
to unity. The computational imprecision in these results also is of the order of

0.1%. Section 6.5 compares the adopted form for dG dρ ν ν ν†( ), /[ ] , a key
spectral quantity in the recovery of the refractivity profile from the LEO
amplitude and phase observations, with the exact form for an Airy layer. It
gives the error as a function of the ray path curvature index.

An alternative rationale for picking the form given in Eq. (5.8-24) for al
+  is

based on probabilistic arguments derived from summing over all possible ray
paths. The rationale is similar to the Feynman sum-over-histories technique in
quantum electrodynamics to calculate the probability of a quantum event. On
the incoming side the probability density distribution of impact parameter
values for the rays is a flat curve; each value is equally likely to occur.
Bouguer’s law requires that the flat distribution be preserved after atmospheric
encounter. Therefore, the values of ρ*  at a turning point are uniformly
distributed. If we set the outgoing spectral coefficient to be the spatial average
over all possible impact parameter values to be used in Eq. (5.8-22), we end up
with an averaging integral to evaluate. The stationary phase value of this
integral yields ρ ρ ν*

†( )= . Therefore, the stationary value of G[ , ]ρ ν  at

ρ ρ ν= †( )  should be adopted in Eq. (5.8-22).
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5.9 Interpreting Wave Theory in a Refracting Medium
Using the Stationary Phase Technique

We now return to the wave theory spectral representation in Eqs. (5.8-1ab)
for the electric field at a point ( , )r θ  in the refracting medium. Before
presenting numerical examples using this spectral representation, we apply
stationary phase concepts to aid in the interpretation of those numerical results
to compare with geometric optics. We follow Chapter 3 closely here; in
particular, we refer to the material in Sections 3.10 through 3.13. The integrals
in Eq. (5.8-1b) are characterized by a slowly varying factor multiplied by the
sum of four phasors that are rapidly oscillating over most of the spectral
number space. The main contributions to these integrals come from
neighborhoods where any one of these phasors is varying the least. Our task
now is to use the stationary phase technique on these integrals to identify the
possible stationary phase neighborhoods for each phasor and to calculate the
values for Er  and Eθ  at a given point ( , )r θ .

5.9.1 Geometric Interpretation of the Phasors

We rewrite the asymptotic forms for the Hankel and Legendre functions in
Eq. (5.8-1) in a phasor form that provides a useful geometric interpretation.
Except for a point ( , )r θ  located very near a turning point, we will show that the
stationary phase neighborhoods in ν–space are sufficiently below the value
ρ ρ= krn( )  so that the negative argument asymptotic forms for the Airy
functions given in Eq. (3.8-7) can be used. In this case, from Eqs. (3.10-1)
through (3.10-4), the spherical Hankel functions can be rewritten as
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where

D krnν νρ ν θ ν
ρ

ρ ρ ν ρ= − = 





= <−2 2 1,  sin ,   ( ),  (5.9-2)

Similarly, from Eq. (3.10-5) the asymptotic form for the Legendre polynomial
P (cos )l

1 θ  is given by
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The geometric interpretation of θν  as the central angle to the point ρ θν,( )
and Dν  as its tangential distance in phase units from a spherical caustic surface
of radius ν  has been given in Chapter 3, Eqs. (3.11-1) and (3.11-2), and in
Figures 3-13 and 3-14. Those figures are applicable to an outgoing wave, but
the concepts are the same, whether incoming or outgoing. Figure 3-13 shows
the geometric relationships given by Eq. (5.9-2). Two rays, originally
collimated from the GPS direction, reach the point L located at ( , )ρ θ . The
direct path is a straight path to the tangential point P1 and then straight on to the
point L. Along the retrograde path via P2 , the ray arrives tangentially at P2 ,
travels along the arc P P2 2′  and then departs tangentially from ′P2  going straight
on to the point L. We note that when it is assumed that the stationary phase
value ν*  lies in the range 0 < <ν ρ* , it follows that 0 2< <θ πν * / . As ν
increases through its range of values in the spectral integrals in Eq. (5.8-1b), the
radius of this caustic sphere expands and its center descends.

The four phasors appearing in the integrals in Eq. (5.8-1b) result from the
product of the spherical Hankel and Legendre functions in Eqs. (5.9-1) and
(5.9-3) times the incoming and outgoing spectral coefficients given in
Eqs. (5.5-21) and (5.8-24), respectively. To further interpret these phasors
geometrically we let

outgoing: ,

incoming:

θ θ θ
θ π θ θ

ν

ν

= +

= − +( )
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Because the stationary neighborhoods for ν  will be close to ν ρ θ α* sin )= +( ,
we would expect ∆θν  to be small in these neighborhoods. Figure 3-14 provides
a geometric interpretation of ∆θν  in terms of the extra phase ν θν∆  along the
θ = 0  direction that results from the offset θ θν−  for an outgoing wave (and
θ π θν− −( )  for an incoming wave).

5.9.2 Stationary Phase Conditions

We now insert the asymptotic forms in Eqs. (5.9-1)-(5.9-3) into
Eq. (5.8-1b), and we substitute the forms for the spectral coefficients al

−  and

al
+  given by Eqs. (5.5-21) and (5.8-24), respectively. After some manipulation

of Eq. (5.8-1b), the spectral representation for E rr ( , )θ  and E rθ θ( , ) becomes

(5.9-5)
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where the four phases are given by

Ψ

Ψ

Ψ

Ψ
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( , )

†

†

+ + = + +( ) + + − [ ]
+ − = + −( ) − + − [ ]
− + = − − − −( ) + −

− − = − −
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D G G
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D
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ν ν

ν ν

ν

ν θ θ π ρ ν ρ ν

ν θ θ π ρ ν ρ ν

ν θ θ π π ρ ν

4 2

4 2

3 4

νν θ θ π π ρ νν + −( ) + −













/ [ , ]4 G
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Here ( , )+ −  designates use of the spherical Hankel function of the first kind ξl
+

and the negative sign in the exponential for the Legendre polynomial; similarly
for the other combinations. In the integrals in Eq. (5.9-5), θν  varies slowly with
ν , but the phasor terms are rapidly varying except at stationary phase points.
The principal contribution to these integrals comes from neighborhoods about
stationary phase points. In the stationary phase technique the phase of each
phasor is expanded in a Taylor series through second degree about possible
stationary phase values of ν . Thus, the first degree term is zero and the Taylor
series contains only a zeroth degree term and a quadratic term. Upon evaluating
the slowly varying terms at a stationary phase point, the integral reduces to a
Fresnel integral.

To see if a stationary phase point exists for the four phasors given in
Eq. (5.9-6) we substitute Eq. (5.9-4) into Eq. (5.9-6) to obtain

Ψ ∆

Ψ ∆

Ψ ∆

Ψ

( , ) / [ , ] ,

( , ) / [ , ] ,

( , ) / [ , ]

( , )

†

†

+ + = + +( ) + + − [ ]
+ − = − − + − [ ]
− + = − − − −( ) + −

− − =

D G G

D G G

D G

ν ν ν

ν ν

ν ν ν

ν θ θ π ρ ν ρ ν

ν θ π ρ ν ρ ν

ν θ π θ π ρ ν

2 4 2

4 2

2 2 3 4

−− + + −













D Gν νν θ π ρ ν∆ / [ , ]4

(5.9-6’)

Comparing the terms in Eq. (5.9-6’) with Figure 3-13, we conclude ( , )+ +  is
associated with an outgoing wave from the far side of the scattering sphere, that
is, it is associated with the retrograde path; ( , )− −  is associated with the
incoming wave on the near side, and so on. We can eliminate by inspection the
phasors Ψ( , )+ +  and Ψ( , )− + , because these are associated with waves that
travel around the far side of the sphere in Figure 3-13 via point P2 . They will
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provide negligible contributions to the spectral integrals for the electric field
when ro / λ  is large and the point L is located well into the first or second
quadrants in θ . The term 2νθν  in their arguments results in very high rates of
phase accumulation for essentially all values of ν .

5.9.3 Stationarity of ΨΨ ±± ±±( ),

Returning to Eq. (5.9-6) we take the partial derivative of the phase Ψ( , )± ±
with respect to ν  in each of these four phasor combinations that appear in
Eq. (5.9-6) and attempt to set the resultant equal to zero. We conclude
(remembering that 0 2< ≤θ πν /  and that 0 < <θ π ) the following with regard
to the possibility of achieving a stationary value for each of these phases:

∂ ∂νΨ( , ) / :+ + = 0

no, if θ ∂ ρ ν ρ ν ∂ν> [ ]−( )2G G*
†, [ , ] / ,

∂ ∂νΨ( , ) / :+ − = 0

yes, if θ π ∂ ρ ν ρ ν ∂ν< − [ ]−( )/ , [ , ] /*
†2 2G G ,

∂ ∂νΨ( , ) / :− + = 0

no, if θ ≥ 0

∂ ∂νΨ( , ) / :− − = 0

yes, if θ π ∂ ρ ν ∂ν> − [ ]/ , /*
†2 G .

As already mentioned, for an occultation from an LEO we can effectively rule
out the ( , )+ +  and ( , )− +  combinations. These are contributions to the integrals
in Eq. (5.9-5) that originate from the far-side of the sphere (Figure 3-13). They
are negligible when θ  lies well into the upper quadrants and when the ratio
ro / λ  is very large, both of which are assumed here. The combination ( , )+ −
corresponds to an outgoing wave on the near-side of the sphere where the
spherical Hankel function ξ ρl

+ ( )  is used; the combination ( , )− −  corresponds to

an incoming wave on the near-side where ξ ρl
− ( )  applies.

5.9.4 Plane Waves

As an illustrative case, consider the stationary phase possibilities for a
planar wave in a homogeneous medium. Here n' ≡ 0  and therefore, G[ , ]ρ ν ≡ 0 .
An appropriate spectral representation for this case is given from Bauer’s
identity (Section 5.3) in spherical coordinates
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exp cos ( )
( )

P (cos )i i ll l
l

j
ρ θ ψ ρ

ρ
θ( ) = +∑

=

∞
2 1

0
(5.9-7)

Here, expressing il
l lψ P  in terms of phasors (with ψ ξ ξl l l= +( )+ − / 2 ) leads to

the same combinations Ψ( , )± ±  given in Eq. (5.9-6) but with G[ , ]ρ ν ≡ 0 .
Attempting to set ∂ ∂νΨ( , ) /± ± = 0  for the four possible sign combinations in
the region 0 < <θ π  produces the following conditions on θν :

( , ):  ;  impossible

( , ):  ;  possible if

( , ):  ;  impossible

( , ):  ;  possible if

+ + = −
+ − =
− + = +
− − = − >

θ θ
θ θ θ π
θ θ π
θ π θ π θ π

ν

ν

ν

ν

 0 < < / 2

 > / 2

It follows that the ( , )+ −  case corresponds to a departing planar wave and that
the ( , )− −  case corresponds to an approaching wave. In either case a stationary
value for Ψ( , )± −  is achieved when the spectral number ν ν ρ ρ θ= = =*

* sin .
For this value D Dν ρ ρ θ*

*
cos= = . The second derivative of Ψ( , )± −  is

∂ ∂ν ν
2 2 1Ψ / *= ± −D .

We can evaluate the summation in Bauer’s identity using the stationary
phase technique. Expanding Ψ( , )± −  in a Taylor series about the stationary

phase point ν ρ*
*=  through the quadratic term yields

Ψ( , ) ˙ ,

sin ,  cos

*

*

*

*

*
*

± − = ± −( )

= = =









D
D

D

ν
ν

ν

ν ν π

ν ρ ρ θ ρ θ

1
2 4

2
m
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Replacing the summation in Bauer’s identity by an integral and using
Eq. (5.9-8) we obtain

i l D i d

iD
iD i

D
d iD

l l
l

j
( ) P (Cos ) ˙ exp ( , )

˙ exp exp
( )

exp

/

*

*
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*

2 1
1

2

1
2 2

0

1 2

0

2

0

+∑ = ± ± −( )

= ± ±( ) ± −





= ±( )













=

∞ −∞

∞

∫

∫

ψ
ρ

θ
π

ν

π
ν ρ ν

ν

ν
ν

ν
ν

Ψ

(5.9-9)

By a change of variable π ν ρ νs D2 2= −( ) /* * , the integral in Eq. (5.9-9) is

transformed into a complex Fresnel integral. Since ρ* >>1, this is essentially a
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complete Fresnel integral equal to ±( )2 1 2π νiD *
/

. Thus, Eq. (5.9-9) reduces to

exp exp*
*

±( ) = ( )iD iDν ρ , which equals the left side of Bauer’s identity.

Note again that 2ψ ξ ξl l l= ++ − . However, ξl
−  appears in Ψ( , )− − , and ξl

+

appears in Ψ( , )+ − . Therefore, only ξl
−  contributes to the spectral sum in

Eq. (5.9-9) for a position well within the incoming region, i.e., for an incoming
wave. Only ξl

+  contributes for an outgoing wave. This is consistent with the

asymptotic forms that ξl
+  and ξl

−  assume when ρ ν>> . Here

ξ ρ ρ ρl
li i± +→ ±/ ( ) exp( ) /m 1 . Thus, ξ ρl

+ /  corresponds to an outgoing

spherical wave and ξ ρl
− /  corresponds to an incoming spherical wave.

5.9.5 The Electric Field for an Incoming Wave

We now evaluate the integrals in Eq. (5.9-5) for the electric field vector
using the stationary phase technique. We first assume that the point ( , )r θ  is in
the incoming region well away from a turning point, so that the negative
argument asymptotic forms for the Airy functions apply. In an incoming region
π θ π α ρ ρ> > −/ ˜ ( , )* *2 . If we set as a criterion for “well away” that the point
( , )r θ  must be such that ŷ < −2  at its stationary phase point, then by applying
Bouguer’s law in Eq. (5.6-3), one can show that a suitable criterion is
θ π α ρ ρ ρ> − +/ ˜ ( , ) /* * *

2 2 K . For GPS signals in the Earth’s atmosphere,

2 3/ mrad.
*

Kρ ≈  In an incoming region well away from a turning point only

the phase ( ) ( , )i Ψ Ψ= − −  contributes significantly to the spectral integrals.
We denote the field in an incoming region by (i) E( , )ρ θ , and we

let ( ) ( , )i Ψ Ψ= − − . Thus, ( )i Ψ  is the spectral density function for the phase
delay at the point ( , )ρ θ  for an incoming wave. It follows from Eqs. (5.9-5) and
(5.9-6) for ρ ρ> *  that

( ) ( )
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( , )
sin
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(5.9-10)

To evaluate these integrals using the stationary phase technique, we expand
( )i Ψ  in a Taylor’s series through second order in spectral number about its
stationary phase value. Using Eqs. (5.9-2) and (5.9-6), ∂ ∂ν( ) /i Ψ  becomes
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∂
∂ν

θ θ π ∂
∂νν

( )i GΨ( ) = − + − +



 = 0 (5.9-11)

and the second derivative becomes

∂
∂ν

∂
∂νν

2

2

2

2
1( )i

D

GΨ( ) = − − (5.9-12)

Let ν*  be a spectral number value that provides a stationary phase, that is, it
that satisfies the stationarity condition in Eq. (5.9-11). Then from Eqs. (5.9-2)
and (5.9-11) one obtains

θ π θ ∂ ρ ν
∂ν

ν ρ θν
ν ν

ν*
*

*
[ , ]

,   sin*= − − 

 = 


=

G
(5.9-13)

We define δ ρ θ ν( , , )  by

θ π θ δ δ π θ ν
ρ

ρ ρν = − − = − − 





= 



−,   sin ,  ( )1 krn (5.9-14)

where for a thin atmosphere δ δ ρ θ ν* *, ,= ( )  will generally be a small quantity.

When ν assumes a value so that δ ∂ ∂ν* /= G , Eq. (5.9-14) shows that we have
a stationary phase point. In our discussion in Section 3.12 on stationary phase
processes in Mie scattering theory, we noted that δ *  should be very close in
value to the refractive bending angle. Here δ *  should be close in value to the
cumulative bending angle ˜ ( , )*α ρ ρ  for a ray passing through the point ( , )ρ θ
with an impact parameter value of ρ* . Here ρ ρ θ α ρ ρ* *sin ˜ ( , )= +[ ]. From
Eq. (5.7-8) it follows that ∂ ρ ν ∂ν α ρ νG[ , ] / ˜ ( , )=  to high accuracy provided that

ν ρ ν< − ~ 2K  (see Figure 5-4). The difference between δ *  and ˜ ( , )*α ρ ρ , and

the between ν*  and ρ* , can be obtained by expanding Eq. (5.9-14) in a power
series for G[ , ]ρ ν  about the point ν̃  where ∂ ∂ν αG / ˜= , exactly. One obtains

ν ρ δ α ρ θ α

δ α ν ν ∂ ρ ν
∂ν ν ν

*
*

*

* *

˙ ˜ cos( ˜ ),  

˜ ˙ ˜ [ , ]
*

− = −( ) +

− = −( )













=

2

2
G (5.9-15)

We expect that ν̃  will be close to ρ* . Upon setting ∂ ∂ν ∂α ∂ρ2 2G / ˜ / *= , it
follows that
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It follows that

δ α ρ ν ∂α ρ ρ
∂ρ

∂α ρ ρ
∂ρρ

*
*

*

*

*

*

˜ ˙ ˜
˜ ( , ) ˜ ( , )

*
− = −( ) −






−

1
1

D (5.9-17)

We note the defocusing factor showing up in these expressions for the offsets.
It follows from Eqs. (5.9-14) and (5.9-15) that if ν*  is near the value ρ* , which
is the value(s) of the impact parameter for the ray(s) passing through the point
( , )r θ , then δ *  will equal the corresponding value of α̃  with close accuracy. If
the ray system from the actual refractivity profile generates a caustic surface,
when the position ( , )r θ  is such that ν*  lies near a contact point with that
caustic, 1 0− ≈( ˜ / )* *

∂α ∂ρ ρD . Eqs. (5.9-16) and (5.9-17) are not valid in that

neighborhood.
Figure 5-17 shows the stationary phase solution for the exponential

refractivity profile in Eq. (5.8-2a) at the intersection of the ∂ ∂νG /  and
δ ρ θ ν( , , )  curves (see Eqs. (5.7-7) and (5.9-14)). The figure shows the
stationary phase solution for 4 position points ( , )r θ , all at the same radial
distance ro  and with θ  increasing from the turning point at
θ θ π α ρ ρ= = − ( )* / ˜ ,2 o o  in 4 equally spaced increments up to

θ π α ρ ρ= + ( )/ ˜ ,2 3 o o . Even for θ π= / 2 , which is very close to the turning
point where one might worry that either, a) the asymptotic form at negative
arguments for the Airy functions might break down, or b) the approximations
for the spectral coefficients given in Eq. (5.5-21) for al

− and Eq. (5.8-24) for al
+

might fail. At θ π= / 2  the intersection point yields a stationary phase value

that corresponds to an Airy function argument of ˆ*y ≈ −20 . This value for ˆ*y  is

also corroborated by evaluating Kρ ρ ρ− −1( )*  from Bouguer’s law in

Eq. (5.6-3). This justifies our use of the negative argument asymptotic forms
for the Airy functions in the expressions for Ψ( , )− −  in Eq. (5.9-1) when θ  is
at least π / 2  or greater. The intersection point for θ π= / 2  in Figure 5-17
yields a value for ∂ ∂νG /  of 8.056 mrad, which differs by only ~ rad5 µ  from
the value for ˜ , *α ρ ρo( ), ρ ρ* cos= o ∆ , predicted by ray theory in Eq. (5.6-2). A

lower bound on θ  has already been established from Bouguer’s law where we
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set ˆ*y = −2 ; this gave θ π α ρ ρ ε≥ − ( ) +/ ˜ ,2 o o , ε α= √ ≈−2 31Kuo
˜ / . Thus,

except for a very narrow range of θ  values near the turning point, the stationary
phase point ν*  should be very close to ρ*  when the curvature in the refractivity
is relatively slight, i.e., when K kH/ ( )  is small. K kH/ ( )  essentially is the ratio
of the Airy function transition scale (a change in ρ  and/or ν  corresponding to
∆ŷ =1) to the refractivity scale height (in phase units), which for the example
shown in Figure 5-17 is about 0.002.

Even at the turning point at θ θ π α ρ ρ= = − ( )* / ˜ ,2 o o , the intersection point

in Figure 5-17 (where ŷ ≅ 0  in this case) yields a value δ ρ θ ν( , , )* =
∂ ∂ν νG / . mrad* = 9 894 ; the ray theory value from Eq. (5.6-2) for ˜ ,α ρ ρo o( )  is
10 110. mrad . We have already noted the levels of agreement between these
quantities, which are shown in detail in Figures 5-5 and 5-6. These figures
show the close agreement between the wave-theoretic and geometric optics
representations of bending angle under thin atmosphere conditions except in the
immediate vicinity of a turning point.

5.9.6 Evaluating the Electric Field Vector Using the Stationary
Phase Technique

We now evaluate the integrals in Eq. (5.9-10) for the electric field vector in
the incoming region using the stationary phase technique. We assume that the
point ( , )r θ  is well into the incoming region so that the negative argument
asymptotic forms for the Airy functions apply. We have just seen that the
criterion θ π α ρ ρ> −/ ˜ ( , ) /* *2 2 3 should suffice. Inserting into Eq. (5.9-10) the
Taylor’s series expansion through second order terms for
( ) ( , , ) ( , )i Ψ Ψρ θ ν = − −  evaluated at the stationary phase point, and using
Eqs. (5.9-11)-(5.9-15), one obtains for E rr ( , )θ  and E rθ θ( , )
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(5.9-18)

The integrals in Eq. (5.9-18) for ( )i
rE  and for ( )i Eθ  (upon noting that

− ≅ −∞ν* ) are readily transformed through a change of variable into the form

exp /−( )
−∞

∞

∫ i t dtπ 2 2 , which is the complex conjugate of the complete Fresnel

integral, with a value of 1 2 1 2− = −i i( ) / . Hence, the electric field for the
incoming wave in Eq. (5.9-18) may be written as
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( ) ( ) *

( ) * ( ) *
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Φ
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(5.9-19)

We recognize in Eqs. (5.9-18) and (5.9-19) the phase delay term ( ) *i Φ ,
which here is largely a phase advance for the incoming wave because it is
referenced to the θ π= / 2  line. Recalling the asymptotic relationships between
G[ , ]ρ ν  and ∂ ∂νG /  and bending angle quantities given by Eqs. (5.7-6) and

(5.7-8), respectively, we see that the equivalent form for ( ) *i Φ  in geometric
optics is
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The leading term ρ θ α ρ ρcos ˜ ( , )*+( )  is the optical path delay (negative for this
incoming case) from the tangent point on the spherical surface radius ρ*  to the
point ( , )ρ θ . The second term is an arc length term along a sphere of radius ρ*

due to refractive bending. The third and fourth terms (equal to − [ ]G ρ ν, *  in
wave theory (see Eq. (5.7-6)) account for the extra phase delay due to the
refractive gradient-induced bending through the atmosphere that a ray of impact
parameter value ρ*  from the GPS satellite (assumed to be at infinity) undergoes
in reaching the incoming point ( , )r θ .

Eq. (5.9-20) may be compared to the relationship with the eikonal equation
given in Eq. (5.10-11). Here the spectral density function for the complete
phase delay at ( , )r θ , ( ) ( , , )i Ψ ρ θ ν , has a close correspondence to the eikonal

S ( )ρ  associated with the path delay along a ray. When ( ) ( , , )i Ψ ρ θ ν  is

eva lua ted  a t  a  s ta t ionary  phase  poin t  ν ρ*
*=̇ ,  t hen

( )
* *( , , ) ( ) ( )i Ψ ρ θ ρ ρ ρ⇔ −S S .

We also recognize the defocusing factor ( )i ζ  in Eq. (5.9-18), which has its
analogue in geometric optics to account for the dispersive effect of the
refraction gradient on signal power (see Section 5.6). From Eq. (5.7-7),
∂ ∂ν2 2G /  is given by

∂
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π
ρ

ρ
ρ

2

2 2
G d n

d
y y y y d˙

log
'

Ai[ ˆ]Ai [ ˆ] Bi[ ˆ]Bi [ ˆ] '= ′ + ′( )∞

∫ (5.9-21)

Using the asymptotic forms for the Airy functions given in Eq. (3.8-10) when
ρ ν> , one obtains
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∫ (5.9-22)

The integral here can be integrated by parts to eliminate its near-singularity.
Figure 5-5 compares ∂ ∂ν2 2G /  and ∂α ∂ν˜ /  for the exponential refractivity
profile given in Eq. (5.8-2a). It follows that in terms of geometric optics
quantities the defocusing factor can be written as
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When ∂α ∂ν˜ / > 0  then ( )i ζ <1 because π θ α ρ ρ π> + >˜ ( , ) /* 2 .
When the refractivity profile results in a unique stationary phase path from

the GPS satellite to the point ( , )r θ  (e.g., Case a)), then Eq. (5.9-19) shows that
the refracted wave, which was planar before entering the atmosphere, is still
nearly planar (for a thin atmosphere) at the point ( , )r θ . However, its Poynting
vector S  is pointed away from the original axis of propagation by an angular

displacement α̃ . Its phase is delayed by an additional amount ( ) * cosi Φ −( )ρ θ .

Its amplitude is modified by the factor ( ) /
sin( ˜ ) sini ζ θ α θ+( )1 2

, which may be

significantly greater or less than unity depending on the magnitude of
∂ ∂ν2 2G /  at the stationary phase point.

If we have a multipath situation where, for example, three different total
bending angle values satisfy the boundary conditions, then Eq. (5.9-19) will
appear in triplet form (or even in higher odd multiples for more complicated
refractivity profiles). The Gaussian refractivity profile given in Eq. (5.8-2b)
will produce triplets for a certain range of altitudes. The total field in this case
would be obtained by vector addition of the field components from each
contribution. We note again the failure of the stationary phase technique when
the stationary phase points are too near each other or, alternatively, when they
are too near the first contact points with the caustic surfaces for the complete
ray system generated by varying the position of the point ( , )r θ . In wave theory
the accuracy of the stationary phase technique for evaluating the integrals in
Eq. (5.9-10) depends on the magnitude of ∂ ∂ν2 2( )i Ψ  being sufficiently large.
Caustics occur when stationary phase points in spectral number space also
coincide with ∂ ∂ν2 2 0( )i Ψ = , or nearly so. The conditions for the validity of
the stationary phase approach and the third order approach leading to the Airy
function of the first kind are discussed in Appendix D. Multipath scenarios and
caustics are discussed more fully in Section 5.12.

Finally, we note the breakdown in accuracy of this osculating parameter
approach if one attempts to use it exactly at a turning point. As we approach a
turning point, Dν * → 0 . Because ∂ ρ ν ∂ ν2 2G[ , ] /  is finite at ν ρ= , we see

from Eq. (5.9-18) that the defocusing factor ζ  predicted by this technique
approaches unity at a turning point. But from geometric optics (Eq. (5.6-16) we
know that ζ − → + ′1 1 u n n* * */ , which results from the singularity in
∂α ρ ν ∂ν˜ ( , ) /  as  the  turning point  i s  approached,  i .e . ,
D dn d nν∂α ∂ν ρ ρ˜ / ( / )( / )→ −  as Dν → 0 . Turning points using an Airy layer
approach are discussed in Section 5.11
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5.9.7 An Outgoing Electric Field

For a point in the outgoing region well away from a turning point, only the
phase combination ( ) ( , )o Ψ Ψ= + −  in Eq. (5.9-6) contributes significantly to the
scattering integrals for the electric field representation given in Eq. (5.9-5). For
an outgoing region 0 2< ≤ −θ π α ρ ρ/ ˜ ( , )* * , and we have
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Referring to Eq. (5.9-6), we see that ( ) ( , )o Ψ Ψ= + −  is obtained from
( ) ( , )i Ψ Ψ= − −  through the transformation:

( ) ( ) †,  [ , ] ( ), [ , ]o i G G GΨ Ψ=− ⇒ [ ]−{ }ρ ν ρ ν ν ρ ν2 . ( )o Ψ  is the spectral

density function for the phase delay at the point ( , )ρ θ  for an outgoing wave.
We need only apply this transformation to the incoming forms in Eq. (5.9-18)
to obtain the stationary phase evaluation of the spectral integrals for an
outgoing wave. Carrying through the stationary phase computations in
Eq. (5.9-24) yields the electric field for the outgoing wave. It may be written as
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where the outgoing phase ( ) *o Φ  is given by
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The leading term Dρ*
 is the optical path delay from the tangent point on the

spherical surface of radius ρ*  to the point ( , )ρ θ . The second term is an arc
length term along a sphere of radius ρ*  due to cumulative refractive bending
2 ˜ ( , ) ˜ ( , )* * *α ρ ρ α ρ ρ−  to the outgoing point ( , )ρ θ . The first and second terms
combined reference the phase to the line θ π= / 2  for an incident collimated
wave originating from the direction θ π= . The third, fourth and fifth terms in
wave theory account for the extra phase delay due to the refractive
gradient-induced bending through the atmosphere that a ray of impact
parameter value ρ*  from the GPS satellite (assumed to be at infinity) undergoes
in reaching the outgoing point ( , )ρ θ .

The defocusing factor ( )o ζ  in Eq. (5.9-25)) also has its analogue in
geometric optics to account for the dispersive effect of the refraction gradient
on signal power (see Section 5.6). It is given by
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Forms for 2 2 2 2 2d G d Gρ ρ ν ∂ ρ ν ∂ν† †, / [ , ][ ] −  are given in Appendix J and
Eq. (5.9-22).

As has already been shown for the incoming case, Eq. (5.9-25) shows the
(small) deflections in angular displacement 2 ˜ ˜*α α− . Its phase is delayed by an

additional amount ( ) * coso Φ − ρ θ . Its amplitude is modified by the factor

ζ θ α α θsin ( ˜ ˜ ) sin*
/+ −( )2

1 2
, and so on.

We have already commented in the incoming case about multipath and the
possible non-uniqueness of these solutions, depending on the profile of the
refractivity.
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5.9.8 The Electric Field at the LEO

We assume that LEO is well out of the refracting medium and receiving a
signal from an outgoing wave. The equations given for the outgoing case also
describe the field at the LEO except that they are somewhat simplified because
˜ ( , )*α ρ ρ → 0  as ρ→∞ . They become
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where
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Here it is understood that both ˜*α  and the impact parameter ρ*  are implicit
functions of the LEO position coordinates rL L,θ( )  through the application of

Bouguer’s law and the total refractive bending angle given in Eq. (5.6-5).
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5.10 Comparison of Geometric Optics and Wave Theory

Here we briefly review the scalar diffraction results applied to a thin phase
screen model. These results are then compared with those from wave theory.
Thin screen models were discussed in Chapter 2, notably in Section 2.3. A thin
phase screen model provides a proxy for the actual atmospheric medium
through which the electromagnetic wave travels. A thin phase screen model
mimics the transmission effects of the real atmosphere on a traversing
electromagnetic wave. The closeness of this match is limited, of course, by
limitations in the thin screen model itself. However, it is surprising how
accurate a description of certain electromagnetic processes can be achieved
from the model in most situations when thin atmosphere conditions apply. Thin
atmosphere conditions are defined in Chapter 2, Eqs. (2.2-8) and (2.2-9).
Basically, thin atmosphere conditions imply that the curvature of the ray path is
much smaller than the curvature of the ambient equipotential surface, and that
the length along the ray where refracting or bending occurs is small compared
to the radius of curvature of the equipotential surface. Both of these conditions
are related to the refractive gradient in the atmosphere. A somewhat
strengthened thin screen requirement for a perpendicular mounted thin screen is
that no caustics may occur in that screen. The condition for this is given in
Eq. (2.3-13). Thin phase screen models offer considerable simplification in
calculations of electromagnetic processes, including refractive bending and path
delay, but also of other important properties, such as diffraction, multipath,
caustics and shadow zones. Chapter 2 discusses two alternate thin screen
models, a planar screen oriented perpendicular to the LEO/GPS line near the
point of tangency of the actual ray in the Earth’s atmosphere, and an impact
parameter “screen”, actually the post-encounter impact parameter space curve
generated by varying the impact parameter ρ* = ka .

In Chapter 3 we discussed rainbow caustic effects that would be difficult,
but not impossible, for a thin screen model to predict. Processes at turning
points also would be difficult for a thin screen model, as well as
super-refractivity situations, or in the case of the planar screen when caustics
occur in the screen, i.e., when 1 0+ =a d daα α / . For an exponential distributed
refractivity, this is equivalent to requiring β π< ≈−( ) ./2 0 41 2 , where β  is the
ray path curvature parameter given in Eq. (2.2-9) as part of the thin atmosphere
definition. This threshold β π= −( ) /2 1 2  is exceeded across some marine layer
boundaries in the lower troposphere, but rarely exceeded at higher altitudes.

5.10.1 Comparison of Wave Theory with Geometric Optics

We now compare stationary phase terms in spectral number from wave
theory with phase terms from geometric optics. In ray theory the phase at the
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point rL L,θ( )  relative to the phase at the line θ π= / 2  for a collimated incident

wave traveling along the direction θ = 0 , is given by (see Eqs. (A-55)-(A-57))

ϕ ρ θ α ρ α α ω ω
ρ

= +( ) + +
∞

∫L L L L L
*

cos ( )* d (5.10-1)

In wave theory a stationary value of the spectral density function for the phase
delay at the LEO, ΦL

* , referenced to the line θ π= / 2 , is given from
Eq. (5.9-28) by
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The second line is the stationary phase condition that the spectral number must
satisfy. We have seen in Section 5.7, Eqs. (5.7-4) and (5.7-14) (see also
Appendix J) that
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This means that the term ρ ρd n d2 2/( ) must be much smaller than αL  to
maintain close agreement between spectral number in wave theory and impact
parameter in ray theory. This translates into a scale height in distance (i.e., not a
scale height in impact parameter) for an exponential refractivity profile that
must be greater than about 1 km. This scale height limit already is
super-refractive in the lower troposphere, i.e., β >1; rays won’t exist for a
certain critical altitude range of tangency points lying in and below the
super-refractive layer. See Section 6.4. If this stationary phase condition in
Eq. (5.10-2) can be satisfied, and if the curvature condition is met, i.e.,

ρ ρ α ρ* * */ ( )Ld n d2 2 << , then ν ρ θ α ν* *˙ sinL L L= + ( )( ), and it follows that the

stationary value for the spectral density function is given by
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ΦL L L L L L*
˙ cos ( )* * ** = + ( )( ) + ( ) + ∞

∫ρ θ α ν ν α ν α ω ω
ν

d (5.10-4)

The spectral number ν*  will be close to ρ*  if the inequality

ρ ρ α ρ* * */ ( )Ld n d2 2 <<  holds, then the stationary value of phase delay

spectral density function in Eq. (5.10-4) is essentially identical to the phase
delay or eikonal function from geometric optics in Eq. (5.10-1). Therefore,
when a stationary phase value for the spectral number exists, then the two
systems give stationary values for the phase delay that are essentially the same
when the impact parameter in ray theory is set equal to that spectral number in
wave theory.

Concerning the correspondence with the thin screen models, we have seen
in Chapter 2, Eq. (2.3-12), that the phase delay evaluated at the point ρ θρ*,

*( )
on the impact parameter space curve (with θ π α ρρ* L/ ( )*= −2 ) is given by

ϕ ρ α α ω ωρ ρ* L L
*

* ( )= +
∞

∫ d (5.10-5)

The difference between this impact parameter phase delay and the stationary
value of the spectral density function Φ

L

*  is simply due to the geometric delay
(see Figure 5-18) between the LEO and the point rρ ρθ* *

,( )  on the impact

parameter space curve, that is, ρ θ αL L Lcos +( ) .
Regarding the planar thin screen model mounted perpendicular to the

LEO/GPS line, the Fresnel phase function in Chapter 2, Eq. (2.5-1) is given by

Φ h h
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h h d
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∞

∫π
λ

α ω ω2 (5.10-6)

where h and D are in phase units. Referring to Eq. (5.10-4), the first term
ρ θ αL Lcos +( ) is the optical distance from the LEO to the tangent point on a

sphere of radius ρ* , the impact parameter of the ray passing through the
point ρ θL L,( ) . The second term is the optical distance ρ α* L  along the

circumference of a sphere of radius ρ*  from θ π α= −/ L2  to θ π= / 2 . The
sum of these two terms is given by
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Thus, through second order in αL  the first two terms in the stationary phase
value for the spectral density function in Eq. (5.10-4) sum to the phase
accumulation along the ray asymptote from the LEO to the line θ π= / 2 .

The planar thin screen distance D was rather loosely defined as the
perpendicular distance from the LEO to the thin screen, see Figure 5-18. In this
Figure h o= +( ) −ρ θ α α ρL L L Lsin sec  and h oLG L Lsin= −ρ θ ρ , where ρo

provides the reference altitude. The impact parameter space curve is defined by
the point ρ θρ*,

*( ) as ρ*  varies. Here θ π α ρρ* L/ ( )*= −2 . If in Eq. (5.10-6)

we now set D DS= = ρ θL Lcos , it follows upon comparison with Eq. (5.10-4)
that through second order in αL  we have matched the geometric components of
the phase delay in the two systems. This is about as close agreement as we
should expect because the version of the Rayleigh-Sommerfeld integral for
scalar diffraction that we have used in Chapter 2 is accurate only through
second order in αL .

Next to be reconciled are the phase delays in the two systems induced by
the refractivity gradient, which are the integral terms in Eqs. (5.10-4) and
(5.10-6). We also have not been too specific about the orientation of the thin
screen. For convenience here, we place it along the line θ π= / 2 . Comparing
these terms requires

α α ρ ρ
ρL L

*

' '
*
'

*
'h dh d

h
S S

S
* ( ) = ( )∞ ∞

∫ ∫ (5.10-8)

This must hold for all values of hLG , the altitude of the LEO/GPS line in the
planar thin screen model above the reference plane, or equivalently, for all
locations rL L,θ( )  of the LEO during the occultation. This condition may or may
not be feasible, depending on whether or not h is a single-valued function of
ρ* . Differentiating with respect to ρ*  yields

α
ρ

α ρL L( ) ( )
*

*h
dh

d
= (5.10-9)

If no caustics occur in the screen, then at every altitude we can equate the
bending angle in the thin screen at a thin screen altitude h to the atmospheric
bending angle α ρL ( )* . If we place the thin screen along the line θ π= / 2  then
it follows that

h o o= − = −ρ α ρ θ ρ α ρ* *sec sin secL L L (5.10-10)

In a medium with large refractive gradients, thin screen caustics where
dh d/ *ρ = 0  can arise. The perpendicular mounted thin screen is not suitable
for these situations.
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5.10.2 Duality between Systems

It follows from the previous discussions that when stationary values of the
spectral density function exist with respect to spectral number, and when
super-refractivity situations are avoided, then we have a kind of duality
between the stationary phase processes over spectral number in wave theory
and over impact parameter in geometric optics. For thin atmosphere conditions
away from turning points, rainbow caustics, etc., we may establish a
correspondence between wave theory and geometric optics when stationary
phase values in each system are assumed. For wave theory applied to a
spherical refracting medium on one hand, and for the scalar diffraction integral
applied to a thin-screen proxy for this refracting medium on the other hand,
Table 5-1 shows the correspondence between these systems when stationary
phase values are assigned in each system. Table 5-1 shows this correspondence

at a LEO position. Here G G G† † †( ) ( ),= ≡ [ ]ν ρ ν ν , and ρ ν ν ρ
† †( ) ˆ †= − y K .

In summary, a thin phase screen model combined with scalar diffraction
theory gives results that closely match those from wave theory applied to a
spherical geometry when, 1) caustics do not occur in the thin screen,
dh d/ *ρ ≠ 0 , which is related to the thin atmosphere conditions cited earlier, 2)
the observer is relatively far from the refraction zone, and 3) certain LEO
rainbow caustic and reflection locations are avoided.

On the other hand, there are situations where wave theory and wave/optics
approaches give disparate results. One example is when no stationary spectral
numbers occur; this corresponds to super-refractivity in geometric optics or to
transition across a shadow boundary. Another example is a caustic contact point
where second order geometric optics predicts infinity for the amplitude of the
ray and it errors in predicting the exact location of maximum flaring. Wave
theory accurately addresses these cases. Although addressed later, one also can
make a close correspondence between wave theory and geometric optics results
when reflections occur.

5.10.3 Amendments to Account for Wavefront Curvature from the
Finite Distance of the Emitting GPS Satellite

Almost all of the discussion in this monograph has assumed an infinite
distance for the emitting GPS satellite. The wave front curvature effects from
an emitting GPS satellite at a finite distance can be accommodated as follows.
From geometric optics, see Appendix A, Eq. (A-55), the phase delay along a
ray, now referenced to the emitting GPS satellite, is given by

ϕ ρ ρ ρ ρ ρ α ρ α ω ω
ρ

= − + − + +
∞

∫L L
*

* * * L *( ) ( )2 2 2 2
G d (5.10-11)
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Here it is assumed the emitter and the receiver are well out of any refracting
medium. Otherwise, we would have to break the terms involving α

L
 into

separate parts, one for δL , the ray path deflection angle at the LEO, and one for
δG , the ray path deflection angle at the GPS, with α δ δL L G= + ; see
Figure A-3.

This form for the phase delay in Eq. (5.10-11) is the eikonal function S ( )r
in geometric optics. The eikonal equation is | |∇ =S n, and a constant value for
S  defines the geometric optics equivalent of a surface of constant phase delay
of the electromagnetic wave (essentially a wavefront or cophasal surface).

The main change in wave theory for a finite GPS distance is in the
asymptotic form that the incoming spectral coefficients assume for large radial
distances out of the atmosphere. This difference between collimated and
spherical incident waves was briefly discussed in Section 5.5, Eqs. (5.5-3a) and
(5.5-3b). When one accounts for wavefront curvature, the spectral density
function Ψ( , )+ −  for an outgoing wave at the LEO (see Eq. (5.9-6) is amended
to the form (with θ πG ≡ , always)
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Then the stationary value of Ψ( , )+ − , if one exists, is obtained by setting
∂ ∂νΨ( , ) /+ − = 0 . This yields
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Letting Φ ΨL *
* ( , ) /= + − +=ν ν π 4  and using Eq. (5.10-3), we obtain
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The lower line is obtained by letting ν ρ*
*→ , and it is in agreement with the

eikonal form in Eq. (5.10-11) given from geometric optics.
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5.11 The Electric Field at a Turning Point

At a turning point r r= * and θ θ= * . We have discussed in Section 5.8 the
breakdown in accuracy of the representation of the field by osculating
parameters when the field is evaluated in the immediate neighborhood of a
turning point. When certain scale factors permit, we can accurately approximate
the medium by a spherical Airy layer in the neighborhood of a turning point.
We have seen in Sections 4.7 and 4.8 for a Cartesian stratified medium, that the
osculating parameter approach works well at a turning point when the Airy
functions are used as basis functions. At the boundary r rA=  between the Airy
layer below and the medium above, Section 5.8 uses the continuity conditions
from electrodynamics to match the osculating parameter solution for r rA≥  to
the Airy solution for r rA≤ .

The Airy layer approximation works well when the effect of curvature in
the refractivity profile is sufficiently small over the width of the layer. Two key
scale factors can permit this approximation. The first is related to ′′ ′n n/ . For
an exponential medium this factor becomes H−1, where H  is the scale height.
In this case we want the width of the Airy layer ∆r  to be small enough so that
in the power series expansion of the exponential representation of the medium,
the quadratic and higher order terms in ∆r H/  are negligible, i.e., ∆r H/ .<<1
On the other hand, we don’t want the boundary r rA=  of the Airy layer to be
chosen so close to the turning point radius that the accuracy of the osculating
parameter approach has begun to deteriorate, which occurs when ˆ ~y > −2 .
Using Eq. (5.4-3) to express ∆ŷ  in terms of ∆r  over the width of the Airy
layer, we have

∆ ∆
ŷ

kH

K

r

H
A

= −
ρ

(5.11-1)

Thus, the two key factors permitting an Airy layer approximation are kH  and
K kn r

A A Aρ = ( )/ /2 1 3; the latter is related to rA / λ . When H  corresponds to the

Earth’s dry air conditions and for GPS wavelengths, kH K
A

/ ρ ≈ 500 . In this

case we could set ∆r H/ ~ .0 01, achieving better than 0.01% accuracy in the
representation of the refractivity by an Airy layer, with a boundary above which
the osculating parameter approach also is sufficiently accurate. We also want to
keep ∆ŷ  small enough so that phase run-off in the Airy function approximate
solution given Eq. (5.8-6) compared to the exact solution is negligible. This
also is related to the size of ′′ ′n n/ .

In matching the solution in the Airy layer involving the Airy function of the
first kind with the osculating parameters/spherical Hankel functions that hold
above the layer, we apply the continuity conditions from electrodynamics. This
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resulted in the matching coefficients cl  and dl  given in Eq. (5.8-8). We may
multiply these coefficients by any complex factor that we wish (for example,
i l l ll ( ) / ( )2 1 1+ + ), provided that we apply that factor to both coefficients, or
equivalently, to both the incoming and outgoing components of the field. Also,

at the boundary the outgoing phase term 2G G Aρ ν ρ ν†, ,[ ]− [ ], which is given
in Eq. (5.8-24), must equal the exact value of the round- trip phase delay
through the Airy layer. This fixes ρ†  at the Airy layer boundary per
Eq. (5.8-15). For a given value for l , the asymptotically exact value for the
round-trip phase delay through an Airy layer is given by Eqs. (5.8-12) and
(5.8-13). Fortunately, we need not explicitly apply this condition; we need only
the representation by the Airy function of the first kind at the turning point. But
in practice the numerical integration of these wave equations has a stability
problem below the turning point. The slightest phase error in the initial
conditions at the boundary r rA=  results in a blow-up below the turning point,
or equivalently, to a leakage of the Airy function of the second kind into the
numerical solution. See the discussion of the WKB solutions and Eq. (5.7-26).

Near a turning point we start with the integral version of the spectral
representation for the field given in Eq. (5.8-1b). Because we are evaluating the
field near a turning point we do not have unrestricted use of the negative
argument asymptotic form for the Airy function. But we still can use the
negative exponential form for the Legendre function, which is generally
applicable for large spectral numbers and for 0 < <θ π .

We replace the form a al l l l
− − + +ξ ξ+  in Eq. (5.8-1) with Ai[ ˜]y  times a

spectral number-dependent coefficient. When the negative argument asymptotic
forms hold at the boundary of the Airy layer, we have from Eq. (5.8-8) the
connecting relationship between the solution below the boundary and the
solutions above the boundary. This is given by
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(5.11-2)

Here ỹ  is given by Eq. (5.8-6), and ˜ ˆ /y y= − −1 2 3β . We also have seen in
Section 5.8 that

˜ ˆ , ,†X X G Gl l A A−( ) = [ ]− [ ]ρ ν ρ ν (5.11-3)

where ρ†  in this case is adjusted to force this equality to hold, which is a value
very close to ν . In general, it follows from Eq. (5.8-8) that we may set
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a a C
K

yl l l l A l A
A− − + +( ) =

−
[ ]ξ ξ

π

β
ρ

+
2

1 1 6/ Ai ˜ (5.11-4)

where Cl  is chosen to account for the asymptotic boundary conditions on the
wave. For an initially collimated wave, we use the asymptotic boundary
conditions as r →∞  for a planar incoming wave. For this case, al A

−( )ρ  is

given by Eq. (5.5-21) and al A
+( )ρ  is given by Eq. (5.8-24). It then follows from

Eqs. (5.11-2) and (5.11-3) that Cl  is given by

C i
l

l l
iG G Gl

l= +
+

−( ) = [ ]−1 2 1
1( )

exp ( ) ,   ( ) ( ),† † †ν ν ρ ν ν (5.11-5)

We now have the replacement form at the boundary of the Airy layer for an
originally collimated incoming wave. It is given by

        a a
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iG yl l l l A

l
A

A− − + + −( ) =
−

+
+

−( )( )ξ ξ
π

β
νρ

+
2

1

2 1
11 6

1
/

†

( )
exp ( ) Ai[ ˜] (5.11-6)

We can use this form on the RHS to evaluate the field at any point within the
Airy layer. For a given spectral number and radial position ỹ  is obtained from
Eq. (5.8-6). Upon using the spectral form in Eq. (5.8-1b), we obtain
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(5.11-7)

The constant gradient of the refractivity in the Airy layer, ′ =n dn d/ ρ̃ , is set by
the actual values of n( )ρ  at the turning point r* and at the boundary at r rA= .
Thus, the gradient of the refractivity will be discontinuous at the boundary, but
refractivity itself will be continuous.
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5.11.1 Fourier Transform of the Airy Function

We have seen in previous sections on stationary phase processes, that near
a turning point and at the stationary phase value in spectral number,
dG dρ ρ ρ ρ α ρ ρ†( ), / ˙ ˜ ( , )* * * * *[ ] =  with very high accuracy for thin atmosphere
conditions. But for now let us consider the integrals in Eq. (5.11-7) as Fourier
transforms. When throughout the medium n( ) constantρ = , then G[ , ]ρ ν ≡ 0 , or
at most a constant; it can be removed from the integrands in Eq. (5.11-7). From
[8] we have the integral representation for the Airy function

Ai[ ˆ]
( )

exp ( ) ˆ
/

/y
a

i at a yt dt= +( )( )
−∞

∞

∫3
2

3
1 3

3 1 3

π
(5.11-8)

where a  is any positive constant. It is easy to show that this integral form
satisfies the differential equation for the Airy function Ai ˆ Ai′′ = y . Using the
Dirac Delta function

δ ω
π

ω( ) exp= ( )
−∞

∞

∫1
2

i t dt (5.11-9)

it follows from Eq. (5.11-8) and (5.11-9) that the Fourier transform of Ai[ ˆ]y  is
given by

Ai[ ˆ]exp ˆ ˆ exp /y i y dy iω ω( ) = −( )
−∞

∞

∫ 3 3 (5.11-10)

If we set  ω π θρ= −K ( / )2  and we use the approximation

ν ρ ρ ρ˙ ˆ ˆ /= + +K y y K2 60 , (see Eq. (5.4-3)), then we obtain

Ai[ ˆ] ˆ ˙( / ) / ( / ) / ! ( / ) / ! cosy dy e ei i ie ν π θ ρ π θ π θ π θ ρ θ2 2 2 3 2 53 5−
−∞

∞ − − − + −( )∫ = = (5.11-11)

Thus the Fourier transform of the Airy function of the first kind, at least near a
turning point, is the phasor associated with the optical path length along the ray
measured from the turning point, hardly a surprising result.

We can carry the Fourier transform approach a bit further and apply it to
the radial component of the electric field in Eq. (5.11-1) for the case of the
homogeneous medium where G[ , ]ρ ν ≡ 0 . Using again the Dirac delta function

and its derivatives, it can be shown upon expanding the term ( / ) /l ρ 3 2  in
powers of ŷ  that
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which we already know from physical considerations to be true.
Returning to the stratified case in Eq. (5.11-7), we now evaluate the radial

component of the field at the turning point Er ( , )* *ρ θ , where

θ π α ρ ρ* * */ ˜ ( , )= −2 . We expand G ρ ν†,[ ] in powers of spectral number about

the given value ρ*  where dG dρ ν ν ν α ρ ρ
ρ

†

*
( ), / ˙ ˜ ( , )* *[ ]( ) = . We also make a

change of variable in the integration from ν  to ỹ  using Eq. (5.11-7). We obtain
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We note the phase term Φρ*
. It may be written as

Φρ ρ
ρ α ρ ρ ρ ρ ρ ρ α ρ ρ α ω ω ω

*
*

* * *
†

* * * * *˜ ( , ) ( ), ˜ ( , ) ˜ ( , )= − [ ] = +
∞

∫G d (5.11-14)

The first term is simply an optical path length along the circular arc of radius
ρ*  measured from the reference point (θ π= / 2 ) to the angular position
θ π α= −/ ˜*2 . The second term, from Eq. (5.7-6), is the phase retardation
induced by the gradient in the refractivity that the ray incurs in traveling
through the atmosphere to the tangency point at r*.

The quadratic term in the integral in Eq. (5.11-13) involving
d G d d d2 2/ ˜ /ν α ν=  is related to the defocusing of the incident collimated
wave resulting from the gradient of the refractivity.

5.11.2 Fresnel Transform of the Airy Function

To obtain the Fresnel transform of the Airy function, we again use the
integral form for the Airy function given by Eq. (5.11-8). We obtain
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Here σ  and τ  are constants. From Eq. (5.11-13) it follows for our case that
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ρρ= − −( )1
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(5.11-16)

Eq. (5.11-15) is a more general version of the Fresnel transform; the latter is
obtained by setting σ = 0 . Upon completing the square in the inner integral of
Eq. (5.11-15), one can write it in terms of the complete Fresnel integral. Then
with a change of variable and the use again of the integral form for the Airy
function given in Eq. (5.11-8), one finally obtains
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Here +π / 4  is used in the expression for c when τ > 0 , and −π / 4  when
τ < 0 . Thus, the Fresnel transform of the Airy function yields an Airy function
again but with offsets in phase and argument and with a modified amplitude.
We note the defocusing term | |τ  appearing in the denominator of
Eq. (5.11-17).

Using the Fresnel transform of the Airy function, the value of the integral
in Eq. (5.11-13) becomes
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We note that for thin atmosphere conditions τ <<1. For an exponential
atmosphere,
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For GPS signals with dry air at sea level, τ ~ 10 3− . In this case Eq. (5.11-17)
essentially collapses to unity as τ → 0  and for σ = 0 . In this case Eq. (5.11-19)
reduces to the form
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cos ˜
exp* *

/

*
*

ρ θ
β
α ρ=

− ( )1 1 2

Φ (5.11-21)

We see the defocusing factor 1 1 2− β /  appearing here. Squaring this factor
yields the defocusing in signal power, which essentially agrees with
Eq. (5.6-16), the prediction from geometric optics for the defocusing at a
turning point.

For Eθ  one can use the Fresnel transform of Ai [ ˆ]′ y  to derive similar
results. Eθ  should be essentially zero at a turning point. Also, the integral of
Ai [ ˆ]′ y  over the real axis is zero.

5.12 Caustics and Multipath

Whether or not there is a unique ray, or possibly no ray, arriving at the
point ( , )r θ  depends on the nature of the profile of n( )ρ , which may or may not
result in caustics for the ray system and consequent multiple ray paths within
the multipath zone. We have discussed caustics and their effects Chapters 2 and
3, and they arise again here. These chapters also show examples of the converse
of a multipath zone: the shadow zone, which in second order geometric optics
is a zone devoid of rays in the limit and extreme defocusing in actuality. A
shadow zone based on geometric optics has an analogue in wave theory. In
shadow zones, wave theory using the spectral integrals in Eqs. (5.8-1) or
(5.9-24) predicts much-diminished amplitudes for the field, but not zero. Also,
wave theory accounts for diffraction. Using the stationary phase technique, it is
readily shown that in a strict shadow zone in geometric optics, the wave theory
spectral integrals have no stationary phase points in spectral number; thus, a
small but non-zero fluctuating amplitude results. In the thin screen model
geometric optics predicts no rays within a shadow zone, but the scalar
diffraction integral from a thin screen yields a small but non-zero amplitude in
this zone. The scalar diffraction integral applied to a thin screen integrates the
path delay phasor over impact parameter space in the thin screen. Section 5.10
discussed the close correspondence between stationary phase values of spectral
number in wave theory and stationary phase values of impact parameter in the
scalar diffraction/thin screen. Under most conditions the scalar diffraction/thin
screen model generates essentially the same values for the electromagnetic field
at a point well away from the screen, including diffraction effects, that are
obtained from wave theory using the spectral technique described here.
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We have already shown a specific example without caustics in Figure 5-10
for a monotonic profile for the refractivity, the exponential profile given in
Eq. (5.8-2a). In that example, for a given position ro ,θ( ) , the stationary phase

condition on wavenumber in Eq. (5.9-11) is satisfied uniquely at the
intersection of the δ  and ∂ ∂νG /  curves versus ν . These curves are generated
from Eqs. (5.9-14) and (5.7-7) respectively, for several values of θ , and they
apply to an incoming region. The curve for ∂ ∂νG /  in Figure 5-10 (and
implicitly the δ  curve) uses a refraction profile that corresponds closely to the
physical conditions for the dry air component of the Earth’s atmosphere with ro
corresponding to sea level. The value of ν  at the intersection point of the
∂ ∂νG /  and δ  curves is essentially the impact parameter at the Earth’s surface.
Fixing ro ,θ( )  to a different pair of values would cause a displacement of the δ
curve through Eq. (5.9-14) and the ∂ ∂νG /  curve through Eq. (5.7-7) and,
therefore, to an intersection at a different bending angle ˜ ,α ρ νo( )  and a

different ν  value.

5.12.1 A Numerical Example of Multipath and Caustics

As a simple first example we consider the refractivity profile from
Eq. (5.8-2b), where n( )ρ  has a non-super-refracting Gaussian distribution. A
more realistic case, to be considered later, embeds this distribution in a
background distribution corresponding to the near-exponential form for dry air.
This dry air distribution causes significant defocusing, which has the effect of
greatly compressing the bending angle spread from the multiple rays.

In the Gaussian case d d˜ /α ρ  is not monotonic and, therefore, caustics and
multipath arise for certain positions ( , )r θ . We use the refractivity profile given
by Eq. (5.8-2b) to obtain the electric field at the LEO. When this Gaussian
profile is used in Eq. (5.6-5) a bipolar bending angle profile results, ˜ ( , )* *α ρ ρ
(see Appendix E). The total refractive bending angle at the LEO is
α ρ α ρ ρL ( ) ˜ ( , )* * *= 2 .

Now, we use this Gaussian profile for n( )ρ  in the integral expression for

2 2dG d dG d† †( ) / ( ), /ν ν ρ ν ν ν= [ ]  given by Eqs. (5.7-7) and (5.7-13), and we
generate the curve in Figure 5-19 by varying ν . In this example a particular set
of values, NW .= 0 0001, H kW .=1 6 , and ρ ρw o= , has been used. HW  is the

1−σ  width of the Gaussian refractivity distribution. Here, ρo ≈ ×2 108, which
corresponds to near-sea level for a GPS wavelength. The peak refractivity is NW

is about 40% of the refractivity from dry air there.
We know from our earlier discussion that this 2dG d†( ) /ν ν  curve

coincides with 2 ˜ ( , )* *α ρ ρ  to very high accuracy. From the stationarity
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condition on Ψ( , )+ −  (see Eq. (5.9-6)) for an outgoing wave, we have, upon
setting ∂ ∂νΨ / = 0 , the relationships

δ θ θ ν
ρ

θ δ θ θ ν
νν ν

ν
= − = 




− = − =












−

L

L

L * L
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sin ,  
( )*

†
1 2
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d
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where ν*  denotes a stationary value of the spectral number. By varying ν
while fixing ρL L .= =kr kro1 1  and θL  to specific orbital values, we generate the
δ  curves in Figure 5-19 for three specific orbital values of θL . The

intersections of the δ  and 2dG dρ ν ν ν†( ), /[ ]  curves correspond to the δ *  and

ν*  values given in Eq. (5.12-1), which are stationary phase values for Ψ( , )+ − ,
i.e., ∂ ∂νΨ / = 0  at these points. These two particular δ  curves tangent to the
2dG d† / ν  curve bound the range of θL  values where the effects of multipath
are be evident. In this example that range is about 17 mrad between the upper
and lower caustic contacts for a typical LEO orbit. An intermediate value for
θL  yields a δ  curve with three intersections with the 2dG d† / ν  curve and,
therefore, three stationary phase points for Ψ( , )+ −  in ν –space. Within these
two bounding δ  curves three rays with different bending angles from the GPS
satellite will concurrently converge to the LEO. Outside of this zone there is
only a single ray and its corresponding bending angle.

The upper and lower δ  curves, corresponding to tangency points on the
2dG d† / ν  curve with bending angle values of 12.42 and −5.68 mrad
respectively, define the first contact points with the upper and lower caustic
surfaces bounding this region. The θL  values corresponding to these upper and
lower tangency points are positions for the LEO where episodes of intense
flaring can occur. Each tangency point is near the point of maximum observed
amplitude. At these points the condition 2 2 2d G d/ /ν ∂δ ∂ν=  must hold. From

Eq. (5.12-1) we have ∂δ ∂ν ν/ /=1 D , where Dν ρ ν= −L
2 2 . Therefore, from

Eq. (5.9-29) we have for the defocusing factor at the LEO for a tangency point
is given by ζ νν

− = − =1 2 21 2 0D d G d/ , which defines a caustic contact point.

Setting ν ν ρ= =*
* , we conclude that a condition for no caustics is given by

2 2 12 2d G d d d D†
*/ ˙ ˜ / /

*
ν α ρ ρ= <  for all ρ*  values. Therefore, the gradient of

the bending angle can be positive, but not too positive, less than about
0 3.  mrad/km  for a GPS wavelength and r roL .≈1 1 . We also note that in cases
where the refractivity gradient is continuous, the number of multipath rays is
odd, except at caustic contact point.

If these stationary phase points are adequately separated in wavenumber
(see Appendix D for an “adequacy” index), then geometric optics as an
approximate technique should suffice, which treats them as corresponding to
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separate rays. Geometric optics can be used with Eq. (5.6-5) to generate the ray

for the impact parameter value ρ ρ ν* *
†= ( )  corresponding to each of these

intersection points. The phasors for three rays can be combined as vectors, i.e.,
taking into account their relative phases and amplitudes, to obtain the aggregate
electric field at the point rL L,θ( ) . However, near the caustic limits, two of these

points will merge and geometric optics will become inadequate for stationary
phase points in spectral number that are in the neighborhood of the caustic
contact point. In wave theory the second order stationary phase technique for
evaluating the integrals in Eq. (5.8-1b) over spectral number also becomes
inadequate for the same reason. These spectral integrals should be directly
evaluated, or a third order stationary phase technique can be used, such as that
described in Appendix D and discussed later in this chapter.

A caustic contact historically is associated with laser-like rays, for example,
a rainbow spectral component from a water drop. Whether or not that kind of
flaring in signal amplitude actually occurs at a caustic depends on the curvature
of the 2dG d† / ν  curve, that is, it depends on the magnitude of ∂ ∂ν3 3Ψ( , ) /+ −
at the caustic contact point ν ν= *  where ∂ ∂ν ∂ ∂νΨ Ψ( , ) / ( , ) /+ − = + − =2 2 0 .
If the magnitude of ∂ ∂ν3 3Ψ( , ) /+ −  is relatively small at the caustic point, then
a broader neighborhood of spectral numbers about the stationary phase point
contributes constructively to the spectral integral evaluation. This results in a
larger amplitude. In other words, the spectral width about a stationary phase
point across which phase coherence in the integrand is preserved depends
inversely on ∂ ∂ν3 3Ψ( , ) /+ −  when both ∂ ∂νΨ( , ) /+ −  and ∂ ∂ν2 2Ψ( , ) /+ −  are
at or near zero. We will show later that the amplitude of the flaring at a caustic
contact point is proportional to ( ( , ) / ) /∂ ∂ν3 3 1 3Ψ + − − . If the amplitudes of the
new rays created at a caustic contact point are relatively strong, then signal
flaring is to be expected even if interference is present from a pre-existing ray.
If the amplitudes of the new rays are relatively weak, then the pre-existing ray
will be dominant and the signal flaring, such as it is, will show up on the
envelope of the resulting interference fringes. The Gaussian refractivity profile
used in this section yields the latter scenario. Section 5.13 and Chapter 6
provide examples of the former scenario with very strong nascent rays.

Figure 5-20 shows the relationship between LEO orbital angle θL  and
impact parameter ρ*  from geometric optics for the same Gaussian refractivity
profile and orbit model used in Figure 5-19. This impact parameter diagram is
obtained directly from Bouguer’s law, θ ρ ρ α ρ ρL Lsin / ˜ ( , )* * *= ( ) −−1 2 . Once
the refractivity profile is specified, ˜ ( , )* *α ρ ρ  is obtained from Eq. (5.6-5). For
− ≤ − ≤12 2 4 8. .Lθ θo  a triplet of impact parameter values and bending angles
simultaneously satisfy the boundary conditions provided by the position
rL L,θ( )  of the LEO. Significant multipath occurs within this zone. Caustic



Propagation and Scattering 423

contacts lie at the points where d dθ ρ
L

/ * = 0 . These points correspond to
episodes of signal flaring and they mark the boundaries of the multipath zone,
in this example at θ θL .− =o 4 8  and at θ θL .− = −o 12 2 . Above θ θL .− =o 4 8 ,
rays (a) and (b) are non-existent in a second order geometric optics context.
Only the (m) ray exists. Similarly, rays (m) and (a) do not exist below
θ θL .− = −o 12 2 ; only (b) rays exist.

For the occulted GPS satellite lying in the orbit plane of the LEO and
setting, θL  decreases with time at a rate of roughly 1 mrad/sec. Therefore,
events unfold in Figure 5-20 from right to left. Above θ θL .− =o 4 8 , only one
stationary phase value in spectral number is realized. There is a unique value
for any given orbit angle above this limit. This unique sequence of stationary
phase values in spectral number versus θL  above this limit corresponds in
geometric optics to the impact parameter branch (m) in the figure, which
defines the tangency points or impact parameter values generated by the (m)
family of stationary phase paths, the (m) rays. When θ θL − o  drops below
4.8 mrad, the first contact with a caustic is made. This results in flaring of the
signal and the onset of interference from the triplet of competing stationary
phase points in spectral number. In geometric optics this corresponds to the
existence of three competing ray systems (m), (a) and (b); a member from each
family passes through the position of the LEO. See Figure 2-4 for a ray
diagram. Ray (a) is the anomalous ray, and although it is a path of stationary
phase, it can be shown that this path provides a local maximum in phase delay.
Paths (m) and (b) provide local minima. This multipath episode continues until
the lower caustic contact point is reached at θ θL .− = −o 12 2 . Below this point a
single stationary phase value in spectral number resumes, which corresponds to
the lower main ray (b) and to the resumption of a smooth signal.

Figure 5-21 (a) shows the signal amplitude E rL L,θ( )  at the LEO versus

orbit angle θ θL − o  for the same models used in Figures 5-19 and 5-20. This
Figure was obtained from a numerical integration of the spectral integral for Er

given in Eq. (5.8-1b), or equivalently, Eq. (5.9-10). The numerical integration
was aided with the stationary phase technique to isolate stationary phase
neighborhoods, thereby reducing the computational burden1 (see Section 2.6).
The spectral coefficient al

+ ( )ρ  used in the integration is given in Eq. (5.8-25),

and G G† †( ) ( ),ν ρ ν ν= [ ] is given from Eq. (5.7-2) using the refractivity profile
given in Eq. (5.8-2b), and the parameter values used for Figures 5-19 and 5-20.

                                                  
1 Here one uses the stationary phase technique to find all spectral numbers that yield a
stationary value in Ψ( , )+ − , in this example a maximum of three. Then in Eq. (5.9-24)
it is only necessary to carry out a numerical integration over a suitable neighborhood
around each of these spectral numbers, taking care to properly phase-connect these
separate converged integration intervals.
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This Figure shows the smooth and nearly constant signal amplitude outside of
the multipath zone, and it clearly shows the abrupt onset of a multipath episode
at the upper caustic contact point at about θ θL .− ≈o 4 8 , continuing until the
lower contact point at θ θL .− ≈ −o 12 0 . This Figure demonstrates the violent
interference from a triplet set of stationary phase points that can result from a
non-monotonic refractivity profile if the refractive gradient is even moderate in
magnitude. Caustic flaring at the contact points is almost immediately
overwhelmed by phase interference among the three full-fledged stationary
phase paths. In this example, inspection of the gradients in bending angle in the
middle of the multipath zone in Figure 5-20 show that none of the paths is
overly defocused relative to its competitors. Defocusing is evident in the
neighborhood of θ θL − =o 0  because of the steep gradients in bending angle on all
three rays there. Above θ θL − =o 5 the principal contribution to E rL L,θ( ) comes
from the main ray (m) without interference from the (a) and (b) rays (see
Figure 5-20). Below this point three mutually interfering ray paths contribute to the
spectral integrals. Contact with the lower caustic occurs at θ θL .− ≈ −o 12 2 .
Abrupt termination of the scintillation episode follows. Below this only the (b) ray
remains to contribute to E rL L,θ( ).

Figure 5-21 (b) is a blow-up of the neighborhoods around the upper and
lower caustic contact points to show the fast and slow fringes in amplitude of
the field at the LEO. The high frequency fringes from interference between rays
are resolved at the upper contact point; at the lower point their spacing is less
than the resolution of the figure. The lower contact point shows somewhat less
flaring than the upper point. Figure 5-20 shows that d d2 2θ ρL / *  is somewhat
larger at the lower point than at the upper point. It will be shown that
d d2 2 3 3θ ρ ∂ ∂νL / ( , ) /* = + −Ψ  when ν ρ= * . It follows that when d d2 2θ ρL / *  is

larger, the near-tangency condition between the 2dG d†( ) /ν ν  curve and the δ
curve near a caustic contact point runs over a shorter interval in spectral
number. This is so on the left caustic point in (b). Therefore, a smaller
contribution to the spectral integral for E rL L,θ( ) comes from the spectral

neighborhood around the lower caustic point than from the neighborhood
around the caustic point. The peak amplitudes near caustic contacts are slightly
offset, 0 1 0 2. . mrad− , from the geometric optics predictions for caustic contact
(i.e., where ζ → ∞ ).

Figure 5-22 shows the difference in phase near the upper caustic point
between the complete field at the LEO and the field from only the (m) ray. The
spikes of large phase acceleration in this Figure correspond to orbit angles in
Figure 5-21 (b) where the complete field is almost totally annihilated through
mutual interference between the three rays. The frequency of the phase fringes
scales with impact parameter separation of the rays, which in turn scales
roughly linearly with the 1−σ  width of the Gaussian refractivity profile used in
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these figures. Fast fringes are from interference between the main ray (m) and the
nascent rays (a) and (b). Slow modulation or banding results from interference
between the (a) and (b) rays as their impact parameters begin to separate near the
caustic point.

5-12-2 A Geometric Optics Interpretation of Multipath

Geometric optics can accurately predict many of the fringe features for
multipath situations, such as those shown in Figures 5-21 and 5-23. One must
take into account the amplitudes of the competing rays and their phase
interference as the orbit angle or equivalently, time, evolves. A notable
exception is the failure of geometric optics to accurately predict the field in the
immediate vicinity of a caustic contact. Second order geometric optics predicts
an infinite amplitude at such places, whereas wave theory gives the correct
values.

We now apply geometric optics to see how well it does at predicting the
fringe amplitudes and frequencies shown in Figure 5-21. Starting with
Bouguer’s law, and given our specific refractivity and orbit models, the impact
parameter curve for each competing ray system can be calculated. From the
impact parameter diagram in Figure 5-20 one can determine the defocusing of
any ray versus orbit angle and also the interference frequencies between any
two rays. To interpret the fringes, we need the relative phase changes and
amplitudes of these competing rays evaluated at the LEO.

For the phase change or excess Doppler, we start with the stationary value
of the spectral density of the phase at the LEO. From Eqs. (5.9-6) and (5.12-1)
it is given by

Ψ* * *

* *

( , ) ,

,    sin

* * L
†

* L L *

+ − = + −( ) − ( ) −

= − =









D G

D

ν ν

ν ν

ν θ θ ν π

ρ ν ν ρ θ

2
4

2 2
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where G G† †( ) ( ),ν ρ ν ν= [ ] is given in Eq. (5.7-2) with ρ ν ρ
† †ˆ †= − y K . Here

we evaluate Ψ( , )+ −  at a stationary value Ψ*( , )+ −  with respect to spectral
number. That spectral number ν*  is allowed to assume the value of the impact
parameter ρ*  at a given epoch for a specific ray, either (m), (a) or (b) in

Figure 5-20. We know from spectral theory that ν*  will be very close to ρ*  for

that ray, away from super-refracting conditions. Now we differentiate Ψ*( , )+ −
with respect to time. Both the orbital position of the LEO and the impact
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parameter change as time evolves2. Since we are interested only in the
difference in phase between rays, we can neglect the Doppler term from the
observed GPS satellite. Thus, we have

d
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But, at a stationary phase point in spectral number, θ θ νν − − =L
† /2 0dG d ,

and for a circular orbit ρ̇L ≡ 0 . It follows in this case that

d

dt

d

d
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L

= − = −




ρ θ
θ
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Thus, d d( ) /* *∆Ψ ∆θ ρL = − , where ∆ρ* is the difference in impact parameter
values between any two of the three rays (m), (a) or (b) at a given epoch or
orbit angle, and ∆Ψ*  is the difference in phase at the LEO between these two
rays. These impact parameter differences can be read directly from Figure 5-20.
The high frequency fringes in Figure 5-21 (b) near θ θL − =o 5 result from
interference between the combined but relatively weak3 (a) and (b) rays with
the strong (m) ray. At θ θL .− =o 4 8 , the difference in altitudes of the impact
parameters between the (m) ray and the nascent (a) and (b) rays is 16.3 km.
Thus the frequency of the fringes resulting from phase interference between
these two ray systems is given by ( ) / . /a bc L2 16 31π θ λ− −( ) =d dΨ Ψ* * , or
about 82 cycles/mrad. Although difficult to measure precisely in Figure 5-21
(b), the high frequency fringe rate is indeed about 80 cycles/mrad. At the lower
caustic contact point near θ θL − = −o 12 , the high frequency fringes are caused

                                                  
2 We also should include the obliquity effect resulting from the GPS satellites generally
not lying in the LEO orbit plane. This correction factor is discussed in Chapter 6. It can
reduce Doppler values by up to about 35% for inclination angles up to 30 deg. Here we
assume that the occulted GPS satellite lies in the orbit plane of the LEO. This
assumption essentially impacts only the scale factor between LEO orbit angle change
and elapsed time.
3 Caustic rays are renown for beaming like searchlights at their nascence, but in this
example the (a) and (b) rays are relatively dim (combined amplitude of 1.14 compared
to the (m) ray amplitude of 1.0). This is because of the relatively large magnitude of

d d2 2θ ρ
L

/ *  at the caustic contact point. The upper Gaussian wing of the refractivity
profile leads to a rapid falloff in the gradient of the bending angle with increasing
altitude and therefore, to a main ray (m) not significantly defocused here.
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by interference between the (b) ray and the dying (m) and (a) rays (or nascent
rays for a rising occultation). Figure 5-20 shows a much wider separation in
impact parameter values there between the (b) ray and the (m) or (a) rays. The
high frequency fringe rate is around 180 cycles/mrad. We deal with fringe
frequency compression from defocusing later.

The low-frequency modulation in Figure 5-21 (b) comes from interference
between the (a) and (b) rays near the upper caustic contact point at
θ θL .− =o 4 8 , and between the (m) and (a) rays near the lower contact at
θ θL − = −o 12 . These ray pairs have narrowly different impact parameter values
at these locations in this figure, but they have about the same amplitude
initially. For the right hand side of (b) near θ θL − =o 4 ,

( ) /b
*

c
*

L2 1π θ− −( )d dΨ Ψ  is about 5 cycles/mrad , but this modulation
frequency is accelerating rapidly with decreasing θL . We can infer this
acceleration from Figure 5-20, which shows the impact parameter values of
these two rays separating rapidly with decreasing θL  as they move away from
the caustic contact point where these rays were created. At the lower caustic
point the low frequency and weakening modulation results from interference
between the (m) and (a) rays, which are dying out completely below
θ θL − = −o 12 .

5.12.3 Amplitude Variability from Geometric Optics

Except in the immediate neighborhood of the caustic points, the amplitude
variability shown in Figure 5-21 can be predicted using geometric optics. In
this approach one adds up the complex amplitudes of the three rays taking into
account their respective defocusing. The amplitude of the slow modulation in
this Figure can be obtained from the defocusing factor ζ α ρρ

− = −1 1 2D d d
*

˜ /* *

for each ray. The slow modulation peaks and valleys in amplitude shown in
Figure 5-21 (b) are accurately predicted from the four combinations
| | | |c

/
a

/
b

/ζ ζ ζ1 2 1 2 1 2± ± . (ζb  is negative, a hallmark of an anomalous ray; the path
delay along this ray is a local maximum.) For example, in panel (b) at
θ θL .− =o 4 2 , the (m) ray is still not significantly defocused; its amplitude is

unity. For the (a) and (b) rays we have | | .b
/ζ 1 2 0 382=  and ζc

/ .1 2 0 461= . The
four combinations yield 1 0 461 0 382± ± =. .  1.843, 0.157, 1.079, and 0.921. The
corresponding peak values of the envelope in (b) are about 1.84 and 0.16 for the
points of maximum amplitude difference, and 1.08 and 0.93 for the nodes. This
is very close agreement, considering that the envelope isn’t well defined in that
figure.

At the upper caustic contact point in Figure 5-21 (b), ζbc →∞; therefore,
the agreement cited above must break down as we near such a point. From
geometric optics this occurs at θ θL .− =o 4 77 , but the peak amplitude from
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wave theory in (b) occurs at θ θL .− =o 4 65. At the lower caustic point,

ζab →∞  at θ θL .− = −o 12 18 , but the peak amplitude from wave theory occurs
at θ θL .− = −o 11 98 .

5.12.4 Third Order Theory

The small offsets in location of the peak and the major discrepancy in
amplitude prediction from geometric optics can be reconciled through use of a
third order stationary phase technique. Here, to evaluate the spectral integrals in
Eq. (5.9-10), we expand Ψ( , )+ −  in spectral number about the caustic contact
point where ∂ ∂ν2 2 0Ψ( , ) /+ − = , retaining third order terms. We obtain

Ψ Ψ Ψ Ψ Ψ
( , ) ˙

!
,  + − = + −( ) +

−( ) =
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Here νC  is the value of the spectral number at the caustic contact point. It

satisfies the tangency condition between the 2dG d† / ν  and δ  curves shown in
Figure 5-19, and we know that its value is close in value to ρC , which is the

impact parameter value at the caustic contact point. Therefore, for the purpose
of evaluating the amplitude of the field at the LEO we set ν ρC C= . The partial

derivatives ∂ ∂νΨ( , ) /+ −  and ∂ ∂ν3 3Ψ( , ) /+ −  are evaluated at that point. We
obtain
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Here the relationships, ′′=Ψ d dθ ρL / *  and ′′′=Ψ d d2 2θ ρL / * , follow from

Bouguer’s law in Eq. (5.12-5). Differentiating that expression successively with
respect ρC  yields the relationships given in Eq. (5.12-6). Since we seek only
the modulation amplitude near the caustic contact point (but not the phase), we
can simplify the spectral integrals Eq. (5.9-10) by placing the slowly varying
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quantities (i.e., sin cos
/3 /θ θν ν( )1 2

 and sin cos /θ θν ν( )1 2 ) outside of the
integrals and setting them equal to their values at the caustic contact point.
When the radial and angular components of the field are combined, Eq. (5.9-10)
yields the field at the LEO from the nascent rays near the caustic contact in the
form

E r E e e do
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Here sin / Lθ ρ ρC C= , where ρC  is the impact parameter at the caustic contact
point. The subscript “C ” on E rC L L,θ( )  is to remind us that it represents the

nascent field only. The Taylor series expansion in Eq. (5.12-7) is not intended
to span the spectral number range needed to include the stationary point
corresponding to the main ray. Making a change of integration variable to

ν ν ν ν−( ) = ′′′[ ] ′′′( )C C C
sign /

/Ψ Ψ2
1 3

t , and noting that ν ρC C=̇  is a very large

number, we obtain for the amplitude of the nascent field at the LEO
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where z is given by
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In Eq. (5.12-8) the integral form for the Airy function given in Eq. (5.11-8) has
been used.

Eq. (5.12-8) tells us a few things. First, near a caustic contact the profile of
the signal flaring envelope with orbit angle closely follows the shape of the
Airy function of the first kind (first established by George Airy). Figure 5-23
provides a comparison of this third order prediction of amplitude at the LEO
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from the nascent (a) and (b) rays with their actual combined amplitude from
wave theory for the same case shown in the right side of Figure 5-21 (b). Here
the contribution from the main ray (m) is removed. The shape of the third order
curve follows the absolute value of the Airy function. The agreement is very
close in the neighborhood of the caustic contact point. Third order theory
predicts zero amplitude at the nodes, which actually occurs only when the (a)
and (b) rays have identical amplitudes and opposite phase. In Figure 5-23 we
see slight differences from the wave theory and also a gradual phase
misalignment building up as θL  recedes from the caustic contact. The accuracy
of third order theory with decreasing θL  depends on the degree of symmetry in
the θL  versus ρ*  curve for these two nascent rays about the caustic point. If

d d3 3θ ρL / * C  and the higher derivatives are relatively small, then the

defocusing for the two nascent rays will remain roughly equal in magnitude as
the impact parameters of the nascent rays move away from the caustic contact
point. When close symmetry holds, these rays will continue with decreasing θL

to mostly null each other at the nodes of the secondary lobes and they will
double each other’s amplitude at the peaks. The Airy function approximation
will be valid in this case over a wider range of θL  values. Second order
geometric optics predicts an infinite amplitude at the caustic contact point at
θ θL .− =o 4 77 , which is 0.13 mrad greater than the actual location of the peak.
But the accuracy of geometric optics improves rapidly away from the caustic
contact point. Even at the first node it accurately predicts its amplitude and
location.

The second conclusion from Eq. (5.12-8) is that the amplitude of the

nascent field at the LEO is proportional d d2 2 1 3
θ ρL / *

/

C( )− , a quantity that is

readily obtained from Bouguer’s law and the bending angle equation if the
refractivity profile is given. We see that caustic flaring comes in two flavors.

When d d2 2θ ρL / * C  is small enough, we will have strong flaring near a caustic

contact, on which high frequency fringes from interference with the main ray
will cause a minor modulation. Here there is a wider range of spectral numbers
associated with the nascent rays that coherently contribute to the spectral
integral. An example of this is shown in Section 5.13, Figures 5-31 and 5-32.

Rainbow caustics have a similar form. However, when d d2 2θ ρL / * C  is larger,

as is the case in Figure 5-20, then there is a narrower range of spectral numbers
contributing coherently to the spectral integral. In this case the amplitude of the
nascent field will be smaller; interference fringes from the main ray will
become the dominant feature, with the nascent field providing the envelope of
the amplitude fringes. Two examples of relatively weak caustics are shown in
Figure 5-21.
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The third conclusion concerns the location of maximum amplitude. Neither
′′ΨC  nor ′′′ΨC  is variable; their values are set at the caustic contact point. But, z

is a variable and it depends on the value of θL . We now adjust θL  to achieve the

maximum value for EC rL L,θ( )  given in Eq. (5.12-8). The value z = 0
corresponds to the stationary phase point (θ θ αρC C C− − =L

˜2 0  in the second

order stationary phase formulation) also occurring at the caustic point where
1 2 0− =DC C̃α , which is the prediction from geometric optics concerning

maximum amplitude (i.e., infinity). This condition yields a determination of
θLC , which is at θo + 4 77.  for the upper caustic contact point, and at θo −12 18.
for the lower point. But, we see that the Airy function achieves greater values
away from the stationary phase point at the caustic, which has a value of
Ai[ ] .0 0 355= . The maximum value of Ai[ ]z  nearest to z = 0 is 0.536, and it

occurs at z = −1 019. . If we let ˆ
Lθ  be the value of θL  where z = −1 019. , then

the offset between the geometric optics prediction of the location θLC  of

maximum amplitude and the third order stationary phase prediction, ˆ
Lθ , is

given by
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This expression predicts offsets in Figure 5-21 for the upper caustic point at
θ θL .− =o 4 77  of ˆ . mradL Lθ θ− = −C 0 13 , or ˆ .Lθ θ− = −o 4 64 . At the lower

caustic point at θ θL .− = −o 12 18 , the offset is +0.16 mrad, or ˆ .Lθ θ− = −o 12 02 .
Figure 5-21 (b) shows that these predictions are very close to the actual offsets
obtained from wave theory.

The maximum amplitudes predicted by Eq. (5.12-8) for the nascent field at
the LEO is 1.09 near θ θL .− =o 4 8 , and 0.90 near θ θL − = −o 12 . The actual
values are 1.14 and 0.91. Because the amplitudes of the nascent fields are
comparable to the main ray, the (m) ray at the upper caustic and the (b) ray at
the lower caustic, there will be high frequency fringes of comparable amplitude
superimposed on this nascent radiation. Thus, it is the envelope of the field at
the caustic points that we should compare. Setting the field amplitude of the
main ray to unity, Eq. (5.12-10) predicts the peaks in the envelope to be 2.09
maximum and –0.09 minimum near θ θL .− =o 4 7 , and 1.90 and +0.10 near
θ θL − = −o 12 . Since we are displaying amplitudes here the negative minimum
peak near θ θL .− =o 4 8  is “reflected” about the θL  axis and becomes +0.09.
These compare very closely, if not perfectly, with the actual peaks in the lobe
nearest the caustic contact points.
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An index to characterize the two flavors of caustic flaring, strong and weak,
can be formulated. We take the ratio E r EoC L L, / m

/θ ζ( ) 1 2 , which is the ratio of
the amplitude of the field at the LEO from the nascent (a) and (b) rays at the
caustic point θ θL L= C  divided by the field from the main ray (m) at the same
orbit angle. It follows from Eqs. (5.12-6) and (5.12-8) that this ratio is given by

R = = −
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If d d d d2 2 3 25θ ρ θ ρL L/ /* * m
/

C >> , then R <<1, and vice versa.

Even the fine structure in the minimum envelope in Figure 5-21 (b) at
θ θL .− =o 4 7  is predicted well by Eq. (5.12-8). As θL  is moved away from its

maximum amplitude point at ˆ
Lθ , z varies and Ai[ ]z  diminishes. If we adjust z

so that the amplitude of the nascent field at the LEO is unity, this will mark a
pair of points along the θL  axis where the nascent field and the main field from
the (m) ray can completely cancel each other. Setting E rC L L,θ( ) =1 yields z

values of –1.40 and –0.58. This yields θ θL L
ˆ . ,  .− = + −0 05 0 06, or

θL . ,  .= 4 69 4 58 , which corresponds almost exactly with the θL  values where
cancellation is almost complete.

The first node in the envelope nearest the peak corresponds in Eq. (5.12-8)
to the first zero of Ai[ ]z , which occurs at z = −2 34. . This yields
θ θL L

ˆ .− = −0 16 , or θ θL .= +o 4 48, which is very close to the location of the
actual node in Figure 5-21 (b), θ θL .= +o 4 49 . Here third order theory predicts
zero for the nodal amplitude, but we see a slight departure from this value. The
accuracy of the third order theory deteriorates the further away from the caustic
point one applies it. Actually, third order theory does well for several lobes at
predicting amplitude peaks and nodes, but eventually it falls out of phase with
wave theory results.

The defocusing factors of the (a) and (b) rays at the first node at

θ θL .= +o 4 49  are given by ζb
/

.
1 2

0 462=  and ζc
/ .1 2 0 526= . This node marks

the point where the (a) and (b) rays first become 180 degrees out of phase. The
difference of these defocusing factors is 0.06, which is very close to the actual
nodal amplitude at θ θL .= +o 4 49 .

One also can predict the location of the first node from geometric optics.
We know from Eq. (5.12-2) that at θ θL L= C  the phase function difference

Ψ Ψa
*

b
*− = 0  because, according to geometric optics, the (a) and (b) rays are

merged at that caustic contact point. We now adjust θL  away from the caustic

point until the phase difference is Ψ Ψa
*

b
*− = π , exactly. The expressions for



Propagation and Scattering 433

Ψ* in Eq. (5.12-2) can be used for this calculation, although care in taking the
difference must be exercised because of the enormity of Ψ*  itself. When this
program is undertaken for the example shown in Figure 5-21 (b), one obtains
θ θL .= +o 4 56  for the location of the node where the (a) and (b) rays have
exactly opposite phase, a somewhat less accurate result than the third order
stationary phase prediction, but still a rather good prediction.

An alternate approach is to use the third order expansion for Ψ*  around the
caustic contact point ρ θC C, L( )  in the impact parameter diagram. We use this

expansion to calculate the separation distance ρ ρa b−  and the change in orbit
angle θ θL La b−  required to achieve exactly π  radians phase difference between
the (a) and (b) rays at the LEO since their nascence. At the caustic contact point
θ θL L= C , and from Eqs. (5.12-5) and (5.12-6) it follows that ′ =ΨC 0  and
′′ = ( ) =ΨC * C

d dθ ρL / 0 . Therefore, we may write the difference in phase

between rays (a) and (b) in terms of the third order expansion as
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It follows that the separation distance in impact parameters of the (a) and (b)
rays at their first null since nascence, ∆ρ*ab , is given by

∆
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For ∆
∆Ψ

θ θ θ
πL L L ab

= −( ) =C  we obtain
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We can compare the coefficients in Eqs. (5.12-9) and (5.12-14) for predicting
the location of the first node. The coefficient in Eq. (5.12-9) for ∆θ θ θL L L= − C

is 2.34, which corresponds to the first zero of the Airy function Ai[ ]z .
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Eq. (5.12-9) predicts the location of the node at θ θL .= +o 4 48, which is very
close to the actual first node shown in Figure 5-23. Eq. (5.12-14) gives a
coefficient of ( ) / ./3 2 2 232 3π =  and it predicts the location at θ θL .= +o 4 50 .

We recall that the semi-minor axis of the first Fresnel zone in second order
geometric optics is the separation distance of the impact parameters for two
rays that arrive at the LEO exactly π  radians out of phase. Thus, at a point
where ′′ ≠Ψ 0  one obtains

Ψ Ψ Ψa b a b˙− = ′′ −( ) =1
2

2ρ ρ π (5.12-15)
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At any rate, F  is infinite at the caustic point. For comparison, k−1∆ρ*ab  in
Eq. (5.12-13) for the example given in Figure 5-21 at the upper caustic point at
θ θL .= +o 4 47  has a value of 880 m. In a vacuum F  is about 750 m at the
LEO radial distance of r roL .=1 1 . In Figure 5-26, which shows the impact
parameter diagram for a Gaussian refractivity distribution located in the lower
troposphere with a dry air defocusing medium included, k− ≈1 290∆ρ*ab m . For
dry air at sea level F  is about 250 m. The offset ∆θL  between the primary
peak amplitude at the upper caustic point and the first node is about 0.29 mrad
in Figure 5-21 and about 0.80 mrad in Figure 5-26. (This corresponds to
roughly 300 ms and 800 ms of elapsed time, respectively, plenty of time for a
phase-locked loop GPS receiver to decide that it has got the right stuff.)

From these and previous discussions, we conclude that even at the first
node after the caustic point, second order ray optics does a good job at
predicting the field amplitude, but it gives a somewhat less accurate prediction
of the phase. This agreement with wave theory results improves as the impact
parameters for the nascent rays recede further from the caustic point.

In summary, geometric optics works well for predicting the amplitude of
the field in multipath conditions provided that, 1) the separation in altitudes
between impact parameters of the competing rays exceeds a certain minimum
distance, and 2) caustic contact neighborhoods are avoided. Condition 1) is
equivalent to the requirement in spectral theory that the stationary points in
spectral number are sufficiently separated. When this is satisfied the spectral



Propagation and Scattering 435

integrals, one for each stationary phase point, do not significantly co-mingle;
that is, the spectral neighborhood providing significant contributions to the
spectral integral from one ray does not overlap the spectral neighborhood for
the other ray. This is equivalent to saying that the two rays corresponding to
these two spectral integrals are separated adequately in impact parameter
altitude. An accuracy index based on this separation concept can be derived
from second and third order stationary phase theory. This has been given in
Appendix D. One can derive from that discussion an accuracy-dependent index
for minimum separation altitudes of the impact parameters (or spectral numbers
in wave theory) for which second order ray theory will be adequate. For a given
accuracy it can be shown that this index is proportional to d dθ ρL / *

/( )−1 2 , or to
the first Fresnel zone. From the agreements in amplitude fringes and
modulations discussed above, we also can infer that the relative phases between
rays are handled accurately by geometric optics away from caustic
neighborhoods. Getting absolute phase from ray theory to agree closely with
the phase from wave theory is somewhat more challenging because of the
extreme sensitivity of absolute phase to boundary conditions; this results from
the fact that ro / λ >>1. But, even the phases between the two systems can be
aligned by renormalization.

5.12.5 Reduction of Multipath Spectral Width by Defocusing

The frequencies of the high-frequency interference fringes shown in
Figures 5-21 and 5-22 have a temporal equivalent in the range 80-180 Hz.
These high frequencies result from using a solitary Gaussian refraction model
in these figures. These frequencies exceed by an order of magnitude the actual
maximum bandwidth (~10-15 Hz) of transient signatures in the excess Doppler
observed by a LEO sounding the Earth’s atmosphere. This disparity in the
fringe frequency bandwidth appearing in Figures 5-21 and 5-22 versus realistic
bandwidths is largely due to the defocusing coming from the gradient of the dry
air refractivity, which was omitted in these early figures. In a background
medium that is defocusing, the impact parameter spread between multipath rays
is greatly compressed. We present now a simple expression that accounts for
the defocusing, and from which the qualitative aspects of the interference
fringes from a Gaussian model with dry air added can be inferred.

From Bouguer’s law given in Eq. (5.6-5) we have
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It follows that the shape of the θL  versus ρ*  curve, such as that shown in
Figure 5-20, is essentially determined by the shape of ˜ ( , )* *α ρ ρ .

Suppose that ˜ ( , )* *α ρ ρ  is composed of two parts. The first part is from a
refractivity gradient for a local medium arising from, for example, a localized
water vapor layer. The second part is from a smooth background refractivity
gradient arising from, for example, dry air. We write ˜ ˜ ˜

W Aα α α= + 4. We expect
that the rapid variations and the caustic points in θ ρL ( )*  come from rapid
variations in ˜

Wα . On the other hand, ˜
Aα  is relatively slowly varying, with a

monotonic negative gradient. Therefore, over a sufficiently narrow range of
impact parameter values, the linear expression ˜ ˙ ˜ ˜ ( )A A A *α α α ρ ρ= + ′ −o o  will
suffice. Because of the non-linearity in ˜

Wα  versus ρ* , we have to keep the full
expression. In Eq. (5.12-17) we substitute ˜ ˜

W Aα α+  for α̃ , and we hold θL

fixed while varying ρ* . This gives us an expression for the breadth ∆ρ* , or
altitude difference at any given epoch between impact parameter values
associated with any two competing rays arriving at the LEO. Upon expanding
Eq. (5.12-17) through first degree in ∆ρ* , we have

∆ ∆ρ ρ ρ
α α

αθ
ρ

ρ
* * *

L

W W

A

˜ ˜

˜= = − =
−( )

− ′0 2 1

2 12

1 2

D

D
o

o

(5.12-18)

Here ˜ ˜
W Wα α2 1−  is the difference in one-way bending angles resulting from the

local intrusive medium at a given orbit angle θL  between multipath rays #1 and

#2. At sea level, the defocusing factor from dry air is ζ αρA A
˜− = − ′ ≈1 1 2 10D

o
. It

follows that given the change in bending angle ˜ ˜
W Wα α2 1−( ), ∆ρ*  and

therefore, from Eq. (5.12-4) the multipath Doppler spread ∆ Ψ( / ) /*d dt 2π  will
be reduced by about a factor of ten relative to the spread that would be realized
without the background refractivity.

5.12-6 Combined Water Vapor and Dry Air Refractivity Model

Figure 5-25 shows dG d†( ) /ν ν  where Cases a) and b) for the refractivity
profile have been combined into the form

                                                  
4 Strictly speaking, we should write ˜ ˜ ˜α α α

W W + A A
= − . In other words, expressing α̃

W

and α̃
A
 as separate integrals in Eq. (5.6-5) is not strictly legitimate because of their

non-linear dependence on refractivity. Two rays with the same impact parameter value,
one in a medium of W+A, and one in a medium of W only, follow different paths.
However, for a thin atmosphere Eq. (5.12-18) is a fairly accurate.
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The curves for dG d† / ν  are for different altitudes of the center of the Gaussian
distribution near ρo; the center is given by ρw . Here N Nw o= 0 2.  and
H Hw = 0 05. . The values chosen for the dry air component are: H k= 7 ,

No = × −270 10 6  and ρo oN k= +6378 1( ) . These yield a refractivity profile at
sea level that closely matches the dry air profile for a standard atmosphere. This
dry air profile yields a two-sided bending angle at sea level of 20.4 mrad. A
marine layer with substantial water vapor that is several hundred meters thick
could have a refractivity profile similar to the Gaussian one used in this
example. The value used for Nw  in this example could correspond to a peak
water vapor number density of about 1% of the local density of dry air. This
composite moist refractivity profile yields a narrow (~1 km) transient with a
peak | |′n ρ  value of 0.8. This bending angle profile also results in two caustics.

Figure 5-26 is an impact parameter diagram showing the relationship
between impact parameter ρ*  and the LEO orbit angle θL . This curve results
from the combined exponential distribution for dry air plus the Gaussian
distribution located in the lower troposphere given in Eq. (5.12-19). Here
k w
− =1 1 75ρ . km  and ρo is the impact parameter of a ray with a tangency point

at sea level. Also, θ ρ ρ α ρ ρL Lsin ( / ) ˜ ( , )o o o o= −−1 2 , which is the orbit angle of
the LEO at the refracted shadow boundary. For a setting occultation, θ

L

decreases with time at a rate of roughly 1 mrad/s. This Figure shows the
extensive range (∆θL ~ mrad20 , or about 1400 km of LEO orbital motion) or
duration (~20 s) of multipath at the LEO compared to the half-width Hw

(350 m) of the layer. Scintillation in amplitude and phase at the LEO first
occurs at ray path tangency altitudes that are about 3 km above the altitude of
the layer itself or about 10 s earlier.

Whereas Figures 5-19 through 5-23 use a solitary Gaussian refractivity
distribution and include no defocusing effects from dry air, Figure 5-26
includes defocusing effects arising from the background refractivity due to dry
air, which manifests itself in the much narrower impact parameter separations
for the multiple rays. This defocused scenario produces maximum high
frequency fringes of around 15 Hz, much closer to a realistic case. Over most of
the multipath zone the bandwidth of the interference spectrum is less than
10 Hz for that example. Defocusing from the dry air refractivity profile
compresses the bandwidth of the interference spectrum. But defocusing does not
compress the duration of the multipath episode. In Appendix E it is shown that
the scale for ˜ ˜

W Wα α2 1−( ) for any two competing rays within the multipath zone
depends nearly linearly on HW , the 1−σ  width of the Gaussian distribution,
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and it depends only weakly on the peak refractivity value NW . The width of the
multipath zone in orbit angle or in elapsed time, for example, the difference in
θL  between the upper and lower caustic points, depends on HW

/−3 2 ; it depends
linearly on NW . As we already have noted in Eq. (5.12-18), the fringe
frequency scales, fast and slow, are compressed by defocusing from the slowly
varying negative refractivity gradient from the background medium, dry air in
this case. This compression ratio from dry air near sea level is about ten-to-one.
The excess Doppler difference between rays is ˙ / HzL * *θ ρ π∆ ∆2 5≈ r  , where
the difference in tangency points between rays, ∆r*, is in km. Therefore, the
fast fringe frequency between the main ray (m) and the nascent rays (a) and (b)
shown in Figure 5-26 is about 15 Hz at mid-point in the multipath zone. This
may be compared to the fast fringe frequency range of 80-180 Hz in
Figure 5-20, which does not include any defocusing from an ambient medium.
A simple rule-of-thumb to convert an impact parameter diagram from ρ*

versus θL  into a Doppler spread versus elapse time is as follows: Multiply the

ordinate in km by the factor 5 ˙
Lθ  to obtain Hz, and divide abscissa in mrad by

˙
Lθ  to obtain sec. Here ˙

Lθ  is the rate of change of the subtending angle between
the emitting GPS satellite and the LEO in the plane of propagation, typically
0 6 1 0. . mrad/ s− , mostly depending on an obliquity factor between the LEO
orbit and propagation planes.

Figure 5-27 shows the signal amplitude E rL L,θ( )  at the LEO versus orbit

angle θ θL L− o  during entry into the multipath zone for the same refractivity
and orbit model used in Figures 5-26. This Figure does not include the eclipsing
by the Earth’s limb, including knife-edge diffraction effects. This Figure was
obtained from a numerical integration of the spectral integral in Eq. (5.9-10).
Above θ θL L .− ≈o 8 5 the main ray (m) provides the principal contribution to
E rL L,θ( ) , without interference from the (a) and (b) rays. For the θ θL L− o  range

shown here, the main ray impact parameter is located 2-4 km above sea level.
Because of defocusing from the dry air refractivity gradient there, the amplitude of
the (m) ray has been reduced to about 0.4 from its vacuum value of unity. The
contact with the caustic surface where d dθ ρL / * = 0  occurs at θ θL L .− ≈o 8 54 ,
but the actual maximum flaring from wave theory occurs at θ θL L .− ≈o 8 17 .
Geometric optics predicts infinite amplitude at the caustic contact point, but the
actual value for the field contribution from the nascent rays (a) and (b) is 0.407. We
have already noted that these differences between geometric optics and wave
theory predictions can be reconciled using third order stationary phase theory. The
fast fringe frequency near maximum flaring is about 13 Hz, which is due to the
2.6 km separation between impact parameters of the (a) or (b) rays at their
nascence, from the (m) ray. This rate reduces to a minimum of about 10 Hz near
θ θL L− =o 4 . The slow modulation of the envelope, initially at roughly 1 Hz, is



Propagation and Scattering 439

due to interference between the (a) and (b) rays. The node at θ θL L .− =o 7 8  marks
the first occasion since their nascence where the (a) and (b) rays are π  radians
out of phase. As the impact parameter separation distance between the (b) ray
and the other two increases, the fast frequency gradually increases to a
maximum of about 20 Hz near the lower caustic contact at θ θL L .− = −o 9 4 .

An additional consequence follows from Figures 5-26 and 5-27. Multipath
from a relatively narrow refracting feature low down in the atmosphere, given a
sufficient gradient, can be felt by the LEO for nominal ray path tangency points
far above (this height difference scales roughly as HW

/−3 2 ). For a setting
occultation, flaring of the observed signal at some otherwise benign point is a
harbinger of things to come. We will return to this case later in connection with
the effect of an embedded reflecting surface on the electric field at the LEO.

Finally, Figure 5-28 shows in the thin phase screen the impact parameter
altitude hS  versus hLG  using the same Gaussian plus dry air refractivity profile
used in Figure 5-26, except that N Nw o= −0 2. , an unlikely scenario in the lower
troposphere. We have discussed the thin screen phase model in Section 5.10.
This refractivity profile results in four caustics, five separate ray systems, and
also a quasi-shadow zone around hS . km=1 5  as a result of local defocusing
there. Figure 5-29 shows the amplitude of the field at the LEO that results from
the refractivity profile used to produce Figure 5-28. Multiplying the abscissa by
3 gives the altitude hLG  in Figure 5-28. The steep gradient in hS  versus hLG  in
the thin screen, or equivalently, in the θL  versus ρ*  curve, results in the shadow
zone. The five rays don’t concurrently interfere with each other in this example,
but only as triplets. But, it would be easy enough to adjust the local refractivity
gradient so that the lower caustic point at the nascence of the (d) and (e) rays in
Figure 5-28, for example, was raised to an altitude in hLG  that was higher than
the caustic point at the nascence of the (b) and (c) rays. This would create a
quintuplet multipath episode.

5.13 Spectral Coefficients in a Spherical Refracting
Medium with an Embedded Discontinuity

The case where the refractivity is discontinuous at r ro=  in a large,
homogeneous, spherical symmetric medium was discussed in Chapter 3. Mie
scattering [1, 2] forms the basis of that discussion. It employed the stationary
phase technique for interpretation and to aid the numerical evaluation of the
scattering integrals. All of the scattering equations carry over to the case of a
scattering sphere in a spherical symmetric stratified medium if we replace the
spectral coefficients for an incident planar wave in those equations in
Chapter 3, i l l ll− + +1 2 1 1( ) / ( ( )) , by the spectral coefficients al

− ( )ρ  for an
incoming wave. From Eq. (5.5-21), these spectral coefficients are given by
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These coefficients are applicable to an initially planar wave that has been
subsequently refracted and retarded by the overlying spherical stratified
medium before striking the scattering surface.

Let us now consider the spectral coefficients for the outgoing wave, al
+ ( )ρ .

From Eq. (5.8-24) we have

a i
l

l l
i G Gl

l+ −= +
+
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exp ( ), [ , ]†ρ ρ ν ν ρ ν1 2 1
1

2 (5.13-2)

Here the actual functional form of al
+ ( )ρ  will depend in part on the physical

properties assumed for the refracting and perhaps scattering atmosphere, and
also in part on the impact parameter(s) associated with the ray(s). Suppose that
the scattering surface is located at r ro= . For ρ ρ† > o  these coefficients in

Eq. (5.13-2) are still applicable. What happens when ρ ρ† ≤ o? That depends on
the medium below.

5.13.1 A Medium with a Discontinuity in its Refractive Gradient

We consider a spherical shell with n( )ρ  variable for ρ ρ≥ o  and with

dn d/ ρ ≡ 0  for ρ ρ< o . Then Eqs. (5.5-18) and (5.5-22) show that both al
−  and

al
+  are constant with ρ  when ρ ρ< o . They also must be equal there to avoid

the Hankel function singularity at the origin. Recall that the definition of the

spherical Bessel function of the first kind is ψ ξ ξl l l= +( )+ − / 2 , which is

well–behaved at the origin. It follows in this case that a al o l o
+ −=( ) ( )ρ ρ . This

also follows from the defining integral for G[ , ]ρ ν  given in Eq. (5.5-20), or by
its Airy function form given in Eq. (5.7-2), which we use here. Thus,

G G o oρ ν ρ ν ρ ρ† †, [ , ],  [ ] = ≤ . It follows that the spectral coefficients for the
incoming wave are given by
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At the LEO, G[ , ]ρ νL ≡ 0 and the spectral coefficients for the outgoing wave
are given by
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For a given value of ν = +l 1 2/  such that ρ ν ρ†( ) ≤ o , −2G o[ , ]ρ ν  is the total
phase delay incurred by the lth  spectral coefficient of an initially plane wave
as a result of that wave passing completely through an intervening refracting
shell with an inner boundary at r ro= . When the stationary phase technique is
applied to the spectral integrals, it yields a stationary phase value for ν  that
corresponds in geometric optics to a ray with an impact parameter
ρ ν ρ*

*=̇ ≤ o.
The total field at the LEO consists of both the incoming and outgoing radial

components, as given by Eqs. (5.13-3a) for ρ ρ= L  and (5.13-3b), respectively.
But, we have already seen in Section 5.9 from our discussion of the stationary
phase technique that at the LEO for an occultation only the outgoing
components contribute to the scattering integrals given in Eq. (5.9-5). Because
the LEO is so far away from a turning point, only the outgoing components
yield stationary phase neighborhoods in spectral number. So, we can ignore the
incoming components at the LEO for an occultation geometry.

We also note the relative ease with which this spectral technique using
osculating parameters can deal with a discontinuity in the gradient of the
refractivity at r ro= . This case might correspond to a discontinuity in scale
height of the atmosphere, for example, at the boundary of a marine layer, or in
the lapse rate of the troposphere, for example, at the tropopause. From
Eq. (5.5-20) it follows that G[ , ]ρ ν  is continuous with ρ , even though ′n  is

discontinuous at r ro= . Also, dG dρ ν ν ν†( ), /[ ]  is continuous. It follows that
using the stationary phase technique to evaluate the field from the integrals in
Eq. (5.9-5), the same stationary phase point in spectral number is obtained as
that obtained from the ambient medium without the discontinuity in ′n . We
know that for a given the position rL L,θ( )  of the LEO, the stationary phase

point ν*  is near the impact parameter ρ* . But the second derivative

d G d2 2ρ ν ν†, /[ ]  is discontinuous at ν ρ* = o . This means when using the
stationary phase technique that it is necessary to break the integral for the field
over spectral number into two parts: one part for ν ρ ρ> −o y K

o
ˆ† , and a second

part for ν ρ ρ< −o y K
o

ˆ† . When the impact parameter is close to ρo, these two

parts when summed interfere in phase, resulting in fringes in the amplitude and
phase of the field.
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We choose the simple model in Eq. (5.13-4) with which to compare wave
theory scattering results with Fresnel diffraction from a thin screen model. Here
we assume that ′ ≡n 0  for r ro< . For r ro≥  we assume that n n= ( )ρ , which is
arbitrary other than satisfying the thin atmosphere conditions. As a specific
example, we assume that n follows an exponential law for r ro>  and is a
constant for r ro< ; thus
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Figure 5-30 shows the 2dG d± / ν  curves from Eq. (5.7-7) and certain δ  curves
from Eq. (5.12-1) for this particular refraction profile. From Eq. (5.7-7) it
follows that dG d± / ν  is defined by
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When ν ρ ρ
* ~− < −o K

o
2 , we may replace the Airy functions in these integral

expressions for 2dG d− / ν  by their respective asymptotic forms. From
Eq. (5.7-8) we obtain
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Using the refractivity profile given in Eq. (5.13-4), an explicit form ˜ ( , )α ρ νo  is
given in Eq. (5.8-3). Here ˜ ( , )α ρ νo  is the cumulative bending on a ray at

ρ ρ= o  with an impact parameter value of ν ρ≤ o . It corresponds to α ν− ( ) / 2
given in Section 2.3, Eq. (2.3-10). As we discussed in Section 5.7, the small
difference between dG d− / ν  and ˜ ( , )α ρ νo  only shows up in the immediate
vicinity of a turning point.

For dG d± / ν , we may write its integral in the form
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Here 2 ˜ ( , ) ( )
L

α ν ν α ν= +  corresponds to α ν+ ( )  in Eq. (2.3-11), the bending angle

for a transecting ray through the upper medium with a value ν  for its impact
parameter such that ν ρ≥ o . This ray completely transects the atmosphere
unperturbed by the discontinuity lying below.

The δ  curves in Figure 5-30 are obtained from Eq. (5.12-1) and they
depend uniquely on the LEO angular position θL  as a parameter when the
orbital radius rL  is fixed. From Bouguer’s law in Eq. (5.6-5) this dependence
may be recast in terms of bending angle, except that in this example bending
angle is not unique over a certain range of angular positions. For that reason we
have chosen α ρ

L
( )*

+ , the bending angle in the upper regime, as the parameter.

It is unique. By expanding Eq. (5.12-1) in powers of ( )*ν ρ− , and upon noting

that ∂θ ∂νν ν/ = −D 1, it follows that over a sufficiently narrow range of spectral

numbers δ α ρ ν ρ ρ˙ ( ) ( ) /L ** *= + −+ ++ D . The point of first contact with the caustic

surface is located at the point of tangency of the 2dG d− / ν  curve with the δ
curve for α

L
. mrad+ =12 3 , or for θ θL . mrad− = −o 10 5  for this example. For

LEO angular positions from this value down to θ θ
L
= −o 20 4. , there are three

stationary phase points in spectral number and therefore, three bending angles.
For orbital angles outside of − ≤ − ≤ −20 4 10 5. . mradLθ θo , i.e., for δ  curves
above the uppermost curve or below the lowest one in Figure 5-30, there is just
one intersection point, or one stationary phase point and only one value for the
bending angle. The LEO-observed phase and amplitude in this region between
the caustic contact point and the cusp in bending angles is marked by strong
multipath interference effects and by diffraction in the transition regions. In a
wave theory context, fringes in the observed amplitude and phase result from
interference among the spectral components for spectral numbers in the
immediate neighborhood of ρo when the impact parameter is nearby. In
geometric optics these fringes come from interference among multiple rays.

At the point of tangency of the δ  curve with the 2dG d− / ν  curve, the
condition 2 2 2d G d− =/ /ν ∂δ ∂ν  must hold. The geometric optics equivalent is
d d Dα ν ∂δ ∂ν νL / /− −= = 1, which is equivalent to the condition that the
defocusing factor ζ  must be infinite. This wave theory tangency condition in
Figure 5-30 is equivalent to the geometric optics condition on the impact
parameter (for a circular LEO orbit) d dρ θ* / L →∞ , which is shown in
Figure 5-31. At this tangency point flaring in the observed signal will be
evident, although the actual maximum in flaring occurs at a point slightly offset
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from the tangency point. This offset has been discussed in Section 5.12 using
third order stationary phase theory.

Figure 5-32 shows the amplitude of the field at the LEO in the vicinity of
the first contact with the caustic (θ θL . mrad− = −o 10 5 ) using the same
conditions used in Figure 5-30. The flaring is quite prominent in this example.
Figures 5-32 through 5-34 were obtained from a numerical integration of the
spectral integrals in Eq. (5.9-24) aided by the stationary phase technique to
isolate the contributing stationary phase neighborhoods in spectral number. At
θ θL . mrad− = −o 10 5 , a pair of powerful rays, (a) and (b) in Figure 5-31, are
created. In this example their individual amplitudes are roughly six times the
amplitude of the original (m) ray at this orbital position. Therefore, their
contributions to the field at the LEO largely overwhelm the contribution from
the (m) ray by an order of magnitude. Third order stationary phase theory is
needed at the caustic point in Figure 5-32 to accurately predict the amplitude
and location of the peak. Second order geometric optics predicts an infinite
amplitude at the caustic point, whereas Figure 5-32 shows that wave theory
yields a peak amplitude of about 5.3. In Section 5.12 it is shown that the peak

amplitude associated with a caustic is proportional to d d2 2 1 3
θ ρL / *

/( )− ,

evaluated near the caustic contact point where d dθ ρL / * = 0 . This curvature term
is readily obtained from Bouguer’s law in Eq. (5.12-5), and the bending profile,
which is given in Eq. (5.6-5) in terms of the refractivity profile. Eq. (5.12-13)
provides gives a ratio for the amplitudes of the nascent rays compared with the
amplitude of the main ray, expressed in terms of the first and second derivatives
of the curve, θL  versus ρ*  shown in Figure 5-31. For the specific exponential
shell model in Eq. (5.13-4), which we are using in this section, Eq. (5.12-13)
yields a flaring from the nascent rays alone that is 12.3 times the amplitude of the
(m) ray. This yields a maximum amplitude of 5.3 from all three rays combined,
very close to that the actual peak amplitude shown in Figure 5-32 near the caustic
contact. The amplitude of the main ray (m) is normalized to unity outside the
medium, but defocusing at θ θL . mrad− = −o 10 5  has reduced it to 0.4.

These new rays (a) and (b) begin to mutually interfere with each other, as is
evidenced by the onset of fringes for θ θL . mrad− ≤ −o 10 5 . As discussed in
Section 5.12, Eq. (5.12-4), the frequency of these fringes can be obtained by
multiplying the difference in impact parameter values in km by 5 ˙

Lθ . Already at
θ θL . mrad= −o 10 6  for rays (a) and (b). that frequency has grown to about

40 Hz (with ˙ mrad/ sLθ = −1 ). Figure 5-31 shows that the impact parameter
values for the (a) and (b) rays promptly separate with decreasing θL  and their
defocusing factors begin to steeply decrease from initially infinite values. This
rapid separation in impact parameter values leads to a rapidly increasing fringe
frequency with decreasing θL . This interference initially results principally
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from the mutual interference between the (a) and (b) rays with a smaller
modulation from the weaker (m) ray. Later, as shown in Figure 5-33, as the (a)
ray becomes defocused, the high frequency interference is between the (b) and
(m) rays with a weaker modulation of much low frequency from interference
between the (m) and (a) rays.

Figure 5-33 shows the amplitude of the field near the end of the
interference zone. Here the (m) and (b) rays are well separated and the
anomalous ray (a) has become a minor contributor because of its defocusing
(see Figure 5-31). The impact parameter differences read from Figure 5-31 at
the end of the interference zone predict very high fringe frequencies here. At
θ θL − = −o 19 the frequency of the high frequency fringes between the (m) and
(b) rays is about 250 cycles/mrad. The low frequency modulation in
Figure 5-33 comes from interference between the (m) and (a) rays, which have
narrowly different impact parameter values in this figure. Here
d dΨ Ψ* *a m / L−( ) θ  is about 5 cycles/mrad at θ θL − = −o 17, about
2 cycles/mrad  at θ θL − = −o 19, and zero at θ θL − = −o 20 4. , the end of the
multipath zone.

As was also discussed in Section 5.12, the amplitude of the slow
modulation in Figure 5-33 can be obtained from the defocusing factor
ζ α ρρ
− = −1 1 D d d

* L / *  for each ray. The modulation peaks and valleys are

accurately predicted from the four combinations ζ ζ ζa
/

b
/

m
/1 2 1 2 1 2± ± . The

slow modulation (∆θL ~ . mrad0 2  per cycle at θ θL − = −o 17) results from
interference between the narrowly separated (m) and (a) rays. The (a) ray
becomes very defocused with decreasing θL . At θ θL − = −o 17 the amplitude
contributions from the three rays based on their defocusing factors have the
ratios b:m:a ~1:1/3:1/5. At θ θL − = −o 19, these ratios are ~1:1/3:1/11. For
θ θL .− < −o 20 4 , they are 1:0:0.

The mean amplitude of the field for the range of θ θL − o  values shown in
Figure 5-33 is about 1.1. This is about a factor of three greater than the
amplitude of the (m) ray here because of the lens-like property of the refracting
shell given by Eq. (5.13-4).

Figure 5-34 shows a section of the de-trended phase of the complete field
∆Φmba

*  at  the LEO expressed in cycles for the range
− ≤ − ≤ −11 35 10 85. .θ θL o . It may be compared to the amplitude fringes shown
in Figure 5-32, which cover most of this region. This Figure shows the bursts of
rapid acceleration in phase that correspond to local neighborhoods where
substantial destructive interference occurs, principally between the newly
created (a) and (b) rays. These points correspond to the troughs in amplitude in
Figure 5-32. Phase changes of 1/2 cycle occur over a change in θL  of less than
2 µ rad , or less than 2 ms of elapsed time. For a more realistic refractivity



446 Chapter 5

model with multipath impact parameter separations that are 1/4 the size of those
in Figure 5-31, the elapsed time for a 1/2 cycle change from these brief bursts
would be closer to 5 ms, which is still a significant operational problem for a
closed-loop receiver.

Finally, Figure 5-35 provides a much more benign scenario. It shows the
amplitude of the field at the LEO from the spectral integral in Eq. (5.8-1b) for
the case where the gradient of the refractivity has a discontinuity of the opposite
polarity to that used in Figure 5-32 (and also significantly smaller). The index
of refraction for this case is given by

n N H

n N H

o o o

o o o

+ +

− −

= + − − >

= + − − ≤
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1

Exp[ ( ) / ],  

Exp[ ( ) / ],  
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Here ∆H H H= − >+ − 0 . This profile results in a mild shadow zone in the
neighborhood − ≤ − ≤ −6 5θ θL mrado  with minor diffraction effects. The
bending angle profile for this example is given in Section 2.3 by the Case B
scenario, in particular, Eq. (2.3-21). See also Section 2.4. In this case ∆H  is
positive. When the tangency point of the ray descends through the surface of
the discontinuity, the ray experiences an increased bending rate because of the
increased gradient in refractivity in the lower layer. The amplitude profile
closely follows the square root of the defocusing function except in the
immediate vicinity of the shadow zone. One can compare Figure 5-35 with
Figure 2-11 from the thin screen/scalar diffraction approach. Figure 2-11
applies to a discontinuity in the lapse rate at the tropopause of
∆( / ) K/ kmdT dr = −7 , whereas Figure 5-35 applies to a discontinuity in scale
height of ∆H = +1 km . There is a rough correspondence between these two
quantities in terms of their perturbations on bending angle, which is given by
∆ ∆H H H dT dr/ ( / )↔ − . When this becomes an equality, the perturbations on
the bending angle are about the same, and the resulting diffraction pattern is
about the same. Here ∆H = +1 km  is equivalent to a lapse rate discontinuity of
4 to 5 K/km.

5.13.2 A Transparent Sphere Embedded in a Refracting Medium

For a transparent sphere with a discontinuity in n( )ρ  at ρ ρ= o  and ′ =n 0
inside, the spectral coefficients evaluated at the scattering sphere for the total
scattering, including the scattering effects of multiple internal reflections, are
obtained by modifying the discussion in Section 3.5, Eqs. (3.5-11) and

(3.5-15b), to account for the phase delay − [ ]+G oρ ν,  in the incident wave

induced by the refractivity gradient in the overlying medium. The term bl
( )0  is

called the zeroth degree reflection coefficient because it applies to only an
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external reflection from the sphere; bl
j( ) is the jth degree reflection coefficient;

it applies to a wave that has undergone j −1 internal reflections within the
sphere. Thus, j =1 corresponds to a wave entering and exiting the sphere
without undergoing any internal reflections, j = 2  corresponds to a wave with
one internal reflection, and so on. Summing these coefficients over degree
yields the total or aggregate scattering coefficient Sl , which is given by

S b al l
j

j
l o

l l
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where W̃l  is the complex conjugate of Wl . Here
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Here no
+  is the index of refraction on the outer side of the boundary at r ro= ;

no
−  is the value on the inner side. For a transparent sphere n( )ρ  is constant and

real for ρ ρ< o . Upon propagating the aggregate scattering coefficients upward
through the refracting medium to the LEO, one obtains
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Once again, we see that the scattering coefficients are phase delayed relative to

their vacuum counterparts by an amount − [ ]+2G oρ ν, . The total outgoing field is
obtained by adding these scattering coefficients given by Eqs. (5.13-10) and
(5.13-12) to the spectral coefficients in Eq. (5.13-3) for the direct field. This
combination is then used in the spectral integrals in Eq. (5.8-1b).

Rainbow caustics through a refracting atmosphere with a sharp transparent
boundary underneath can be obtained from this approach.
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5.14 The Scattered Field from a Perfectly Reflecting
Sphere Embedded in a Refracting Medium

Continuing the subject of embedded discontinuities begun in Section 5.13,
we now consider a perfectly reflecting sphere embedded in a refracting
medium. This example has some application to grazing, near-specular
reflections from the ocean [9, 10], especially at very shallow angles of
incidence where the reflected signal is essentially linearly polarized. The
transmitted GPS signals are right-hand circular polarized (RHCP). Therefore,
for grazing angles roughly half the original power is potentially available from
reflected signals, especially if the sea surface is smooth.

The spectral coefficients bl
( )0  for a very large perfectly reflecting sphere in

a homogeneous medium are given in Chapter 3, Eq. (3.17-1). Those
coefficients were obtained from the more general case of a transparent sphere
with a finite discontinuity in the refractivity at its boundary ρ ρ= o . By letting

n →∞  at ρ ρ= −
o , one obtains in the limit the reflection coefficients. Therefore,

in the case of a reflecting sphere in a non-homogenous medium, G[ , ]ρ ν  is
defined only for ρ ρ≥ o . There is essentially infinite phase wind–up in the
spectral coefficients traveling inward across that boundary. If we modify the
scattering equation in Eq. (3.17-1) to account for the sphere being embedded in
a stratified refracting medium we have for the reflection coefficients at the
boundary

b a a kn rl o l o l o
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At the boundary the spectral coefficients are
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These apply to an initially planar incoming wave. The modification to this
equation to account for an initially spherical incoming wave is found in
Section 5.3, Eq. (5.5-3ab). We recall from Chapter 3 that the superscript “(0)”
on bl

( )0  denotes the zeroth degree reflection coefficient, i.e., the coefficient for
the ray with only a surface reflection, i.e., no internal reflections within the
sphere. This is the only non-zero term for a perfectly reflecting sphere. To
obtain bl

( )( )0 ρ  for ρ ρ> o , we use arguments that are similar to those used in
Section 5.8 to propagate the outgoing spectral coefficients through the medium.
We define bl

( )( )L
0 ρ  as the reflection coefficient at the LEO. Assuming that the

LEO is out of the medium so that G[ , ]Lρ ν ≡ 0 , we obtain
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b b iGl l o o
( ) ( )( ) ( exp [ , ]L
0 0ρ ρ ρ ν= −( )) (5.14-3)

It follows from Eqs. (5.8-24) and (5.13-1) that the reflection coefficients at the
LEO for a perfect spherical reflector in a stratified medium are given by
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In other words, for the stratified medium the reflection coefficient of spectral
number l  at the LEO is delayed in phase by an amount − [ ]2G oρ ν,  compared
to the pure vacuum case discussed in Chapter 3.

The total field at the LEO is obtained from the spectral integrals in
Eq. (5.8-1b), which are comprised of the reflection coefficients in Eq. (5.14-4)
plus the spectral coefficients for the incident field. For a collimated
approaching wave, the spectral coefficients for the incident field are given by
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Referring to Figure 5-36, we see that for LEO orbital positions above the
shadow boundary there are two paths, a direct path with an impact parameter
ρ ρd o o okr n r≥ = ( ) , and a reflected path with an impact parameter ρ ρr ≤ o . For

regimes where the stationary phase condition in spectral number, ν ρ ρ* =̇ ≤d o ,
would have held in the absence of the reflecting sphere, there are no stationary
phase points for ν . Here one obtains a diffracted knife-edge decay in amplitude
as the GPS satellite becomes occulted by the reflecting sphere.

From Section 5.9 we know that at the LEO the incoming coefficients
al
− ( )Lρ  for the direct ray (d) may be ignored because they provide no stationary

phase points in spectral number. The sum of the reflection and outgoing direct
coefficients gives the total field at the LEO. They may be recombined into the
form
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Consider the regime ρ ν ρ†( ) > o , the middle line in Eq. (5.14-6). For ν ρ> o ,

′ ′ → −+ξ ρ ξ ρl o l o
_ ( ) / ( ) 1 rapidly because of the runoff of Bi[ ˆ]y  for

ˆ ˙ ( )y K
o o= − >−

ρ ν ρ1 0. Consequently, bl o
( )( )0 0ρ →  for increasing ν ρ> o .

Already at ŷ = +3 , ξ ρ ξ ρl o l o
_ ( ) / ( )+ +1 = 0 001. . This leaves only the term

i l l l i Gl− + + − [ ]( )1 2 1 1 2 2( ) / ( )exp , /†ρ ν  in this regime where ρ ν ρ†( ) > o . This

is just the spectral coefficient for a direct ray, but applied to a spectral integral
that has a lower cutoff at ρ ν ρ†( ) > o . For ρ ρd o>> , there will be a stationary

phase point ν *  well above the cutoff. Assuming that the overlying medium has
a monotonic refractivity gradient, i.e., no multipath, there will be only the one
stationary phase point near ν ρ= d . It follows that when ρ ρd o>>  this integral

yields the field from the direct path, unencumbered by the reflection barrier; the
lower cutoff at ρ ν ρ†( ) > o  has no effect on the value of the integral. This is the
field for a wave that has traveled through a refracting medium without
influence from the reflecting surface below.

On the other hand, for a LEO orbital position that is lower than that shown
in Figure 5-36, for which the direct ray has an impact parameter value ρ ρd o≈ ,

the stationary phase point ν*  will be near ρo. Here the lower cutoff in the
spectral integral near ν ρ= o  does affect the calculation of the field at the LEO.
It yields the knife-edge diffraction pattern that the wave from the direct ray will
exhibit as the GPS satellite appears to approach the limb of the reflecting
sphere and becomes eclipsed. If the LEO is located so that ρ ρd o≤~ , then no
stationary phase contributions occur for any value of ν ; the LEO is in the
refracted shadow. We will show these properties later using stationary phase
theory.

The spectral coefficients on the lower line in Eq. (5.14-6) where
ρ ν ρ†( ) > o  provide the principal contribution to the reflected field at the LEO.
Referring to Figure 5-36, if the orbital position of the LEO is such that ρ ρd o> ,
then there is also a reflected ray with an impact parameter value ρ ρr o< . There

will be a stationary phase point in spectral number, ν ν= * , near ν ρ= r , and the
spectral integral over a neighborhood about this point provides the principal
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contribution to the reflected field. For spectral numbers ν ρ< o ,

′ ′ → − − −( )− +ξ ξl l i i y/ exp ( ˆ) //4 33 2 , which also winds up rapidly with decreasing

ν ρ< o . Therefore, for near-grazing reflections only spectral numbers very near
but below ρo contribute significantly to the spectral integrals for the reflecting
part, but they only do so when the reflected ray exists with ρ ρr o≤ .
Figure 5-38, which we discuss later, shows the impact parameter diagram for
both the direct and reflected rays for a reflecting surface embedded in a
refracting medium. It shows the narrow separation between ρr  and ρo for
near-grazing conditions.

Applying the spectral coefficients for the outgoing part of the wave given in
Eq. (5.14-6) to the spectral integrals in Eq. (5.8-1b), one obtain
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Here the forms for the spectral coefficients for the direct and reflected waves
are given in Eqs. (5.14-5) and (5.14-6). The spectral coefficient for the
incoming part for the direct wave at the LEO, al

− ( )Lρ , is excluded, because the
LEO is located well into the outgoing region.

Asymptotic forms can be used everywhere in these integrals except in the
reflection coefficients for spectral numbers near ν ρ= o . However, the Airy
functions may be used in place of the spherical Hankel functions,
′ ′ = ′ + ′ ′ − ′− +ξ ξl l y i y y i y/ ˙ (Ai [ ˆ] Bi [ ˆ]) / (Ai [ ˆ] Bi [ ˆ]) .

We now consider the stationary phase points in spectral number in the
phasor form of the integrands in Eq. (5.14-7). For an outgoing wave these
phasor forms are given by Eqs. (5.9-6) and (5.9-24) but augmented here by the

inclusion of the reflection coefficients. We note that ξ ξl l
_ / + =1 for real values

of l  and ρ . Therefore, we may write this ratio in phasor form

ξ
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y

y

_

exp ,    tan
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−= ( ) = ′
′










2 1Ω Ω (5.14-8)

Let I( , )L Lρ θ  denote the part of the field at the LEO for a perfectly reflecting

sphere that is due to the ratio ξ ρ ξ ρl o l o
_ ( ) / ( )+ . It follows from Eqs. (5.14-6) –

(5.14-8) that Eq. (5.9-24) for this part becomes
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The total direct and reflected field at the LEO is given by

E I J
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where from Eq. (5.14-6) we have
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The contribution from the Ψo( , )+ −  term to these J integrals mostly will be
negligible when ν ρ> o . Moreover, because 2Ω→π  rapidly for ν ρ> o , this
region in the I integral given in Eq. (5.14-9) will essentially completely cancel
this Ψo( , )+ −  term in the J integral. But the Ψ†( , )+ −  part of the J integrals in
Eq. (5.14-11) accounts for the direct field at the LEO. When ρ ρd o>> , this
field is undisturbed by the reflecting surface and the stationary phase point in
this integral ν ρ* >> o ; but when ρ ρd o≈ , ν ρ* ≈ o  and J yields a knife-edge
diffraction pattern.



Propagation and Scattering 453

5.14.1 Stationary Phase Analysis

Let us now examine the possible stationary phase neighborhoods for the
reflection integrals Ir  and Iθ  given in Eq. (5.14-9). We seek the zero points for
∂ ∂ν2Ω Ψ+( )o / . From Eqs. (5.14-8) and (5.14-9) it follows that the stationary
phase condition is given by

∂
∂ν π

θ θ ∂ ρ ν
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2

2

2 2 1
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(5.14-12)

We assume here that the overlying medium has a monotonic refractivity
gradient. Therefore, the direct ray system is unique (no multipath). One can
show in this case that for LEO orbital angular positions such for
θ α ρ ρ θρL

˜ ( , )+ ≥2 o o o
˙ tan= +θ θo o oN , where θo or r= ( )−sin / L

1 , that there is a

single negative stationary phase point, i.e., ˆ*y < 0 . Otherwise, that point lies in
positive territory and the stationary phase contribution from there will largely
cancel the Ψo( , )+ −  contribution in the J  integral. The latter situation
corresponds to the LEO lying in the refracted shadow of the reflecting sphere.
The LEO orbital position θ θ α ρ ρρL

˜ ( , )o o oo
= − 2  marks the shadow boundary,

the beginning (for the setting case) of the eclipse of the GPS satellite by the
reflecting sphere. Thus, except in the immediate vicinity of this shadow
boundary, the stationary phase value for the spectral number will be less than
ρo, that is, ν ρ ρ

* *˙ ˆ= +o K y
o

 with ˆ*y < 0 , when θ α ρ ρ θρL
˜ ( , )+ ≥2 o o o

.

For the J integral essentially only the Ψ†( , )+ −  term contributes to the field
when combined with the I integral. Except in the interval
ν ν ν ρ

† †~≤ ≤ + 3K
o
~, theΨo( , )+ −  term in the J integral rapidly winds up,

contributing negligibly to the integral. It follows that to calculate the total field
at the LEO using the stationary phase technique, one needs only the
contribution to the I integrals in Eq. (5.14-9) from the stationary phase
neighborhood provided by the condition in Eq. (5.14-12), plus the

exp ( , )†iΨ + −( ) contribution from the J integral in Eq. (5.14-11). For ρ ρd o>> ,
the latter integral gives essentially the direct field at the LEO unperturbed by
the reflecting sphere but refracted by the overlying medium. The spectral
treatment for this direct ray has been previously discussed in Section 5.9 and its
stationary phase solution is presented there. Note the lower limit ρo in spectral
number for the integration in Eq. (5.14-11). If the LEO orbital position is such
that the impact parameter for a ray unperturbed by the reflecting surface is less
than ρo, i.e., ρ ρd o< , then this J integral will not contribute significantly to the
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field. Moreover, if θ θ α ρ ρρL
˜ ( , )< −

o o o2 , the I integrals also have no stationary

phase points for negative values of ŷ , and the contribution from the positive
stationary phase points in ŷ  will be essentially completely canceled by the
exp( ( , ))i oΨ + −  term in the J integral. For orbital positions well into this region
it will be dark.

If ŷ  is sufficiently negative, i.e., ˆ ~y < −2 , we may use the negative
argument  asymptot ic  forms in  M[ ˆ]y .  I n  t h i s  c a s e ,

π M[ ˆ] ( ˆ) / ˆ/y y y→ − − ( ) + ⋅⋅⋅( )1 2 31 7 32 . It follows that 2Ω Ψ+ + −o( , )  in the I

integrals is given by

2
4
3 2

2 2
2

2
3
4

3 2

2 2

2

1

Ω Ψ Ψ

Ω Ψ

+ + − = − − − + + −

+ + − = −



 − −




+

− + −( ) − −

= 





−

o o

o
o

o

o

y

G

( , ) ( ˆ) ( , )

or

( , )

     [ , ] ,

sin ,

/

L L

L

π

ν π θ ρ ν

ρ ν ν θ θ ρ ν π

θ ν
ρ

ν

ν

ν

2

  sin ,

( ˆ) cos ,   /

θ ν
ρ

ρ ν ν ν
ρ

ν ρ

ν
o

o

o
o

oy

= 





− = − − 





≤























−

−

1

3 2 2 2 12
3

(5.14-13)

Although the power series expression for ŷ  in terms of spectral number ν  and
ρo for the reflecting sphere, which is given in Eq. (5.14-12), is adequate, its
exact form is given in Eq. (5.14-13) for ŷ < 0 . See Eq. (5.4-3) for further
discussion. The exact form is useful in a following discussion showing the
correspondence between stationary phase in spectral number and the law of
reflection.

It follows upon setting ∂ ρ ν ∂ν α ρ νG o o[ , ] / ˜ ( , )=  and setting

∂ ∂ν2 0Ω Ψ+( ) =o / , that the stationary phase point for ˆ*y < 0  is given by the

condition

a)  ˜ ,

or

b)  ˆ ˙ ˜ ( , )
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(5.14-14)
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To obtain an explicit value for ν* in terms of θL , we note that for near-grazing

reflections θ α ρ νL
˜ , *+ ( )2 o  will be close in value to θo, as shown in Figure 5-37.

We expand θν *  in a Taylor series expansion about θρo
. Here θρo

 and θL
A  are

defined by
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The angle θL
A  is the apparent orbit angle for the LEO. Because of the incoming

and outgoing bending, ˜ , *α ρ νo( )  on each leg, our coordinate frame will have

been effectively rotated clockwise by 2 ˜ , *α ρ νo( )  (see Figure 5-36). Thus, the

angles of incidence and reflection will be less by an amount ˜ , *α ρ νo( )  than
they would be for the case of a reflecting sphere in a homogeneous medium.

We rewrite Eq. (5.14-14a) as,  2θ θ θ θ θ πν ν ρ ρ* * L
o

o o
− −( ) + −( ) =A .

Expanding θν *  about θρo
 in powers of ν ρ* − o , we obtain
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Noting that for near-grazing reflections θ πν * /o ≈ 2 , it follows from

Eq. (5.14-14) that 2Ω Ψ+ + −o( , )  has a stationary value in spectral number

when ν ν= *  or ˆ ˆ*y y= , which are given by the conditions
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Because θ θ α ρ νL L
˜ , *A

o= + ( )2 , an iteration is required in Eq. (5.14-17) to

determine ν* , once a specific form for 2 ˜ ( , )α ρ νo  is given. For the specific
exponential refractivity profile used in the numerical examples here for dry air,
2 ˜ ( , )α ρ νo  for the reflected ray is given accurately by Eq. (5.8-3). It can be
shown that in this case
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This expression is accurate to 1% for near-grazing reflections, i.e.,
θ α θρL

˜ .+ − <2 0 05o o
. It follows for this case that
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Figure 5-38 shows the impact parameter diagram for this reflection case.
This Figure uses the same refractivity model for the overlying medium as that
used in Figures 5-30 through 5-34. A circular LEO orbit was used with
r roL .=1 1 . Therefore, the (d) curve in Figure 5-38 for the direct ray is identical
to the (m) curve in Figure 5-31. The impact parameters for the (d) and (r) rays
merge at θ θρL .− = −

o
20 4 , the grazing point. Divide impact parameter value

given in Figure 5-38 for the reflected ray (r) by 100 to obtain the correct value.
The reflected ray is very defocused for near-grazing conditions. At θ θρL − =

o
0

it is about an order of magnitude more defocused than the (d) ray. This can be
calculated by recalling from geometric optics that for a circular LEO orbit the

defocusing factor is given by ζ θ ρρ= ( ) −D d d
* L / *

1
. If we set ν ρ*

*=  in the

stationary phase condition given in Eq. (5.14-14a), then we can form the
derivative d dθ ρL / *  while still satisfying the stationary phase condition as θL

and ρ*  vary. We obtain for the defocusing factor ζ r  for the (r) ray
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For near-grazing reflections the term θ θρL *

A −( ) is small. Also,

θ θ θ θ ρρ ρ ρ* L˙ /− = − −( )o o

A
oD

2
8 , which is a very small term. Expanding about

θ θρL
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o
−( )  yields
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The first term on the RHS is dominant for near-grazing reflections. At
θ θρL − =

o
0  for the case shown in Figure 5-38, the values of the first and

second terms are about 120 and 20, respectively. Thus, Eq. (5.14-20) predicts
about 0.08 for the amplitude Eoζ r

/1 2  of the reflected ray at θ θρL − =
o

0 . The

amplitude of the (d) ray there is about 0.6, which decreases to less than 0.4 at
the grazing point, ∆θL mrad= 20  below.

Figure 5-39 shows the impact parameter diagram for the reflected and
direct rays for θ α ρ ρ θ πρo o o− ≤ ≤2 ˜ ( , ) L , which covers the entire range of LEO

orbit angles for which a reflected ray exists, from the shadow boundary to a
vertical reflection. Here Eq. (5.14-14a) has been used to solve for ρr  using the
same refractivity and orbit models that are used in Figure 5-39a.

We note that θ θρ ρL
A

o o
K−( )  has a scale-invariance provided that third and

higher order terms in θ θρL
A

o
−( )  given for ˆ*y  in Eq. (5.14-17) can be ignored.

The stationary phase points for a reflecting sphere of another radius ρ̃o is

obtained from our problem merely by applying the scale factor ( ˜ / ) /ρ ρo o
1 3  to

the results obtained here for θ θρ ρL
A

o o
K−( ) . One of the practical aspects of this

is that the a priori value for ρ̃o, for example, in the case of the topography of
the ocean surface, is uncertain to some extent in an actual observation sequence
of reflected and direct signals. This is particular true for near-grazing
conditions. This scale-invariance property may be useful.

For ŷ < 0  we can determine from the I integrals in Eq. (5.14-9) using the
stationary phase technique the contribution from the stationary phase point to
the field at the LEO from the reflecting sphere. We need the second derivative
∂ ∂ν2 22Ω Ψ+( )o /  evaluated at the stationary phase point given by either
Eq. (5.14-14) or by Eq. (5.14-17). This is given by
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Replacing ∂ ∂ν ν
2 2G / *( )  with ∂α ∂ρ˜ / *  and also θν *

o with its expansion in terms

of θ θρL
A

o
−( ) , which is given in Eq. (5.14-27), we obtain
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which is the same as the defocusing factor from geometric optics given in
Eq. (5.14-20b). For orbital positions near but above the shadow boundary
( ˆ*y < 0 ), it follows from the stationary phase technique that the field at the
LEO from the reflecting sphere is given by
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and also
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The stationary phase term Φ*  in Eq. (5.14-23) gives the stationary value of
the phase at the LEO from the reflecting sphere relative to the phase of the field
(neither refracted nor reflected) at the center line at θ π= / 2  in Figure 5-43 (a).
The π  term gives the phase reversal from the reflection. The term

ρ ν ρ νL
* *2 2 2 22− − −o  accounts for the difference in optical path length

relative to the centerline in Figure 5-43 (a). The first term ρ νL
*2 2−  gives the

length along a straight line from the tangent point on the circle of radius ν*

centered at the origin to the LEO. The second term − −2 2 2ρ νo
*  subtracts the

length ( ρ νo
2 2− * ) between that tangent point and the reflection point along

this straight line, and it also subtracts the distance ( ρ νo
2 2− * ) that the

reflection point has moved counterclockwise from the centerline. The third term

2ν α ρ ν* *˜ ,o( )  accounts for the extra path length along an arc of radius ν*

resulting from the refractive bending. The fourth term − [ ]2G oρ ν, *  accounts for

the extra roundtrip delay from infinity down to a radius ν*  resulting from the
refractive gradient in the overlying medium. These third and fourth terms may

b e  r e w r i t t e n  i n  t h e  f o r m ,  2 ν α ρ ν ρ ν* * *˜ , ,o oG( ) − [ ]( )
˙ ˜ , [ , ]*= ( ) −( )2 ρ α ρ ν ρ ρo o o oG .

The form of the amplitude signature ζ r  given in Eq. (5.14-23) is

dominated by the θ θρL
A

o
−( )−1

 term for near-grazing reflections. This

dominance continues with increasing θL  until the term 1 2−( )Dρ ∂α ∂ν
r

˜ /  in

∂ ∂ν2 22Ω Ψ+( )o /  given in Eq. (5.14-21) becomes dominant. Equating terms

yields a threshold of θ θ ζ θρ ρL
* cotA

o o
− ≈ 4 , or when θL  becomes about a

quarter of a radian greater than θ α ρ ρo o o− 2 ˜ ( , ). Here the impact parameter of
the direct ray is well above the atmosphere. For impact parameters above this
threshold, ζ ∂α ρ ν ∂ννr ˜ ( , ) /− → −1 1 2D o  is the defocusing factor at the reflecting

surface for a ray with an impact parameter value of ν . In this case the
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amplitude of the reflected signal at the LEO reduces to | | r
/I Eo→ ζ1 2 , the same

form that the amplitude of the direct ray has except that the defocusing factor is

based on the bending angle ˜ , *α ρ νo( )  for the reflected ray rather than
˜ ( , )* *α ρ ρ  for the direct ray. However, polarization effects from reflections at

these steeper angles must be considered. The GPS receiver aboard the LEO is
configured for RHCP.

5.14.2 Results from Wave Theory

Figures 5-40 through 5-42 show the amplitude of the field at the LEO from
a GPS satellite that is being occulted by a perfectly reflecting sphere embedded
in a refracting atmosphere. Figure 5-40 shows the amplitude E(d)  from the

direct ray only. This corresponds to the (d) ray in the impact parameter diagram
shown in Figure 5-38. Figure 5-41 shows the amplitude E(r)  from the reflected

ray (r) only, and Figure 5-42 shows the amplitude of the complete field. These
figures show the transition over about 25 mrad in orbit angle, or roughly 1/2
minute in time, as the LEO moves into the shadow. Here an exponential profile
(Eq. (5.8-2a)) has been used for the overlying medium with No = × −270 10 6 ,

k H− =1 7 km , ro = 6378 km , and k = × −3 31 104 1. km . Also, r roL .=1 1  and

θo or r= ( )−sin / L
1 . From Eqs. (5.6-5) or (5.8-3) one can show that

2 20 4˜ ( , ) . mradα ρ ρo o =  for these parameter values. Figures 5-40 through 5-42
were obtained from a numerical integration of Eq. (5.8-1b) aided by the
stationary phase technique. The impact parameter diagram in Figure 5-38
effectively provides those stationary phase points in spectral number for a given
value of θL .

The mean amplitude in Figure 5-40 shows a rapid decay for θL  values such
that ρ ρd o< , or θ θ α ρ ρρL

˜ ( , )− < −
o o o2 , the penumbra region. The GPS

satellite being eclipsed by the reflecting sphere causes the knife-edge
diffraction pattern in Figure 5-40. For ρ ρd o> , Figure 5-41 clearly shows the

ζ r  signature in the mean amplitude for the reflected wave that is predicted
from the stationary phase technique in Eq. (5.14-23). This agrees with the
geometric optics prediction in Eq. (5.14-20) for LEO orbit angles above the
shadow boundary, θ θ α ρ ρρL

˜ ( , )> −
o o o2 .

Figure 5-42, which gives the wave theory prediction of the total field at the
LEO over the same near-grazing orbit angles shown in Figures 5-40 and 5-41,
shows the fringes from interference between the direct and reflected rays. Very
high fringe frequencies develop as the separation in altitude between the impact
parameters of the reflected and direct rays increases with increasing θL . The
single-sided amplitude of the interference fringes here nearly equals the
amplitude of the reflected ray (r) in Figure 5-41. The fringe amplitude would be
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significantly reduced for an imperfectly reflecting sphere. The fringe frequency
here ranges from about 60 Hz at θ θρL − =

o
0 , about 20 s before eclipse for the

setting case, to zero at θ θ α ρ ρρL
˜ ( , ) . mrad− = − = −

o o o2 20 4 , at the refracted
shadow boundary.

5.14.3 Law of Reflection

Chapter 3 provides a geometric optics interpretation of the stationary phase
point for a reflecting sphere in a homogeneous medium. There it was shown
that when the spectral number assumes its stationary phase point, it corresponds
to the actual reflection point on the sphere where the law of reflection holds.
We also can similarly interpret the stationary phase results for a reflecting
sphere embedded in a refracting medium. Referring to Figure 5-43, which is a
representation in spectral number space, we have two concentric circles in each
panel. The outer circle corresponds to the reflecting sphere and it has a fixed
radius ρo in spectral number space. The inner one of variable radius is a circle

of radius ν , the spectral number. In panel (a), ν ν= * , the stationary phase
value. In panel (b), the provisional reflection point has been moved clockwise;
here ν ν< * , and the angle of incidence i  [QA is the “i” supposed to be in
Berthold Script as is the “i” in Eq. (5.14-25)?] is greater than the angle of
reflection r = θν

o . Noting the triangle ABC in (b), we see that the sum of the
interior angles of this triangle satisfies the relationship

i r+ − + =θ θ πν L
A (5.14-25)

for any provisional point of reflection on the circle of radius ρo in spectral
number. But, at the actual reflection point where i r= , Eq. (5.14-25)
becomes the same relationship given in Eq. (5.14-14a) for the stationary phase
condition on the spectral number. We conclude that θ

ν *

o , which always equals

the angle of reflection r  by construction, also equals the angle of incidence i
when the spectral number assumes its stationary phase value, thus establishing
the law of reflection. It follows that

i r= = = −
−

θ π θ θ
ν

ρ
*

*˙o o

2 2

A

(5.14-26)

Lastly, we see in Figure 5-43 (a) that the position of the reflection point on
the reflecting sphere is located at a point counterclockwise relative to the
mid-point. This rotation ε , is given by
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(5.14-27)

For the exponential refractivity model given in Eq. (5.8-2) and from the
resulting bending angle expression given in Eq. (5.8-3), we have

ε θ θ α ρ ρ ρ θ θ θ˙ ˜ ( , ) tanL
L= − + − −( ) −o

o o
o o

o o o
N

H
N

2 2
1
2

(5.14-28)

Thus, the refractive bending (for a negative refractivity gradient, i.e.,
˜ , *α ρ νo( ) > 0) acts to increase the counterclockwise rotation of the reflection

point. This is qualitatively indicated in Figure 5-36. For sea level conditions
and for θ θL mrad− =o 10 , the third and fourth terms on the RHS of
Eq. (5.14-28) provide a correction of about 10%.

For a backward reflection case, that is, when θ πL /> 2, the incoming

spectral coefficients al
− ( )Lρ  also would have to be taken into account. When

θ πL />> 2, this geometry would correspond more closely to a near-vertical
reflection geometry rather than the near-grazing one discussed here.
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Figure 5-1.  Ray path geometry for a scattering sphere embedded in a
stratified medium.

Figure 5-2.  Phase rate term gl ( )ρ  for spectral numbers near ρ .

Figure 5-3.  Solution for refractive bending angle and impact
parameter at intersection of curves.  Because 2α̃  is monotonic the
solution is unique.

Figure 5-4.  Comparison of the gradient of the wave theory phase
function ∂ ρ ν ∂νG[ , ] /  with the cumulative refractive bending angle α̃
from geometric optics, in the vicinity of a turning point.

Figure 5-5.  Comparison of defocusing quantity ∂ ∂ν2 2G /  from wave
theory  with the analogous quantity ∂α ∂ν˜ /  from geometric optics, in
the vicinity of a turning point.

Figure 5-6.  Variation of G o[ , ]ρ ν  with ρ  near ρ ν= o  obtained from

eqs. (5.7-1) and (5.7-2).  This form is invalid for increasing ˆ ˆ†y y> .

Figure 5-7.  Gradient of the phase of al
− ( )ρ  in an Airy layer.  ∂ϑ ∂ρl

− /
is the exact value; −( log / ) ( ˆ)d n d g yρ  is from modified Mie scattering
theory.  Phase units are mrad.  (a) β = 0 24. .  (b) β = 0 9. .

Figure 5-8.  Schematic of simple incoming and outgoing regions.

Figure 5-9.  Example of a topology with overlapping incoming and
outgoing regions; from a sharp change in refractivity gradient.

Figure 5-10.  ∂G / ∂ν  curves for an exponential refractivity profile.
Dashed curve shows ∂G / ∂ν  at ν ρ ρ= +* ˆ†

*
y K  as ρ*  varies, or

equivalently, ˜ ( , )* *α ρ ρ .

Figure 5-11.  ∂G / ∂ν  curves for a Gaussian refractivity profile for
different locations of its center.  Dashed curve is the value of ∂G / ∂ν
at ν ρ ρ= +* ˆ†

*
y K , or equivalently, ˜ ( , )* *α ρ ρ .

Figure 5-12.  Variation of Γ( ˆ)y  in the vicinity of a turning point.

Figure 5-13.  Comparison of Ul ( ˜ )ρ  from a numerical integration of
eq. (5.8-5) in an Airy layer with the osculating parameter solution.
(a) Wave equation solutions.  (b) Difference between solutions.
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Figure 5-14.  Comparison of wave equation solutions in a strong
refracting medium.  (a) Refractivity profile. (b) Bending angle profile.
(c) Wave equation solutions, Ul ( )ρ  and C a al l l l l( ( ) ( ) ( ) ( ))+ + − −+ρ ξ ρ ρ ξ ρ .

Figure 5-15.  Comparison of wave equation solutions in a severely
refracting medium with a super-refracting layer.  (a) Refractivity
profile. (b) Bending angle profile.  (c) Impact parameter profile.
(d) Wave equation solutions; spectral number ν = <kn r r kn r ro o

c c( ) ( ) .

Figure 5-16.  Comparison of wave equation solutions with the spectral
number located in the super-refracting zone. (a) Wave equation
solutions with ν = kn r rc c( ) .  (b) Profile for ŷ .  (c) Wave equation
solutions with kn r r kn r rc c

u u( ) ( )< <ν .  (d) Profile for ŷ .

Figure 5-17.  Stationary phase solution ν* to eq. (5.9-13) for the Case
a) refractivity profile (eq. (5.8-2a)).

Figure 5-18.  Geometric relationships between ray path and phase
screens for collimated incident rays.

Figure 5-19.  Wave theory multipath zone in spectral number for a
Gaussian refractivity profile. The phasor exp( ( , ))iΨ + −  in the spectral
integral is stationary at an intersection of the δ  and 2dG d† / ν  curves,
which gives the bending angle 2α̃  of the corresponding ray. Tangent
points are caustic contacts where ∂ ∂ν ∂ ∂νΨ Ψ/ /= =2 2 0 .

Figure 5-20.  Impact parameter diagram from geometric optics.  This
figure shows ρ*  versus LEO orbit angle θ

L
 in the neighborhood of the

same refracting layer described in Figure 5-19.  Labels (m), (a) and
(b) identify the corresponding rays: main, anomalous, and branching.

Figure 5-21.  Amplitude of the field at the LEO versus orbit angle for the
same orbit model and Gaussian refractivity profile used in Figures 5-19
and 5-20.  (a) Amplitude over the entire multipath zone.  (b) Amplitude in
the vicinity of the upper and lower caustic contact points.

Figure 5-22.  Phase difference near the upper caustic, expressed in
cycles of the complete field at the LEO minus the field of the (m) ray.

Figure 5-23.  Comparison of the amplitude of the field at the LEO
from only the nascent rays (a) and (b) based on wave theory versus
third order stationary phase theory.  Refractivity and orbit models are
the same as those used in Figures 5-19 through 5-22.

Figure 5-24.  Quadratic behavior of ρ*  for nascent rays near caustic.
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Figure 5-25.  Bending angle by a refractivity profile from dry air plus
a narrow Gaussian marine layer that is located at different altitudes.

Figure 5-26.  Impact parameter diagram with defocusing.  LEO orbit
radius is ρ ρ

L
= 1 1. o .  This figure shows ρ*  versus θ

L
 in the multipath

zone from a narrow Gaussian refractivity profile from a marine layer,
plus a more slowly varying dry air exponential distribution.

Figure 5-27.  Amplitude of the field at the LEO versus orbit angle near
entry into the multipath zone for the defocused case using the same
refractivity and orbit models used in Figure 5-26.  The equivalent elapsed
time shown in this figure is about 5 s.

Figure 5-28.  Impact parameter diagram in the thin phase screen for
the same refractivity profile in Figure 5-26, except that N Nw o= −0 2. .

Figure 5-29.  Amplitude of the field at the LEO for the refractivity and
orbit model used in Figure 5-28.  Double reversal in the polarity of the
bending angle gradient causes four caustics and two multipath zones

Figure 5-30.  Stationary phase curves for a spherical shell with a
discontinuity in dn d/ ρ  at ro  per eq. (5.13-4). Stationary phase points

occur at the intersections of the δ  and 2dG d± / ν  curves.

Figure 5-31.  Impact parameter diagram for the refracting shell
described in Figure 5-30.  Boundary encountered at θ θ

L
− = −o 20 4. .

Figure 5-32.  Amplitude of the field at the LEO near the caustic
contact using same refractivity and orbit models used in Figure 5-30.

Figure 5-33.  Continuation of Figure 5-32 to the lower boundary of
the interference zone at θ θ

L
− = −o 20 4. .

Figure 5-34.  De-trended phase at the LEO near onset of multipath.
Figures 5-30 through 5-34 use same refractivity and orbit models.

Figure 5-35.  Amplitude at LEO from a discontinuity in scale height.

Figure 5-36.  Direct and reflected paths for a sphere of radius ro

embedded in a medium with a monotonic refractivity gradient.

Figure 5-37.  Geometry for LEO near the shadow boundary of a
reflecting sphere embedded in a refracting medium.
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Figure 5-38.  Impact parameter diagram for a reflecting sphere
embedded in a refracting medium versus orbit angle near grazing.
The direct curve (d) is identical to the (m) curve in Figure 5-31.

Figure 5-39.  Large scale version of the impact parameter diagram
over the entire LEO orbit above the grazing point.

Figure 5-40.  Perfectly reflecting sphere embedded in a refracting
medium.  Wave theory prediction of the amplitude | ( , ) |( )E d L L

r θ  of the

field at the LEO from the direct ray only.

Figure 5-41. Amplitude of the field at the LEO from a perfectly reflecting
sphere embedded in a refracting medium; reflected ray (r) only.

Figure 5-42.  Amplitude of the complete field (d)+(r) at the LEO from
a perfectly reflecting sphere embedded in a refracting medium, the
direct ray from Figure 5-40 plus the reflected ray from Figure 5-41.

Figure 5-43.  Law of reflection.  Geometry in spectral number space
for a reflecting sphere embedded in a refracting medium.  Outer circle
describes reflecting sphere of radius ro , which maps in spectral
number space into a fixed circle of radius ρo .  Inner circle has a
variable radius value, ν .  (a) Radius of inner circle is the stationary
phase value, ν * , which gives i r= .  (b) ν ν< * , which gives i r> .
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Figure 5-7ab.
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ŷ

− d n

d
g y

log
( ˆ)

ρ

(a)

∂ϑ ∂ρl
− /

β = 0 9.

ŷ
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Figure 5-10.
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Figure 5-14abc.
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Figure 5-17.
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Figure 5-21a.

Figure 5-21b.
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Figure 5-23.
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Figure 5-38.
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Figure 5-43a.
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Chapter 6
The Inverse Problem: Using Spectral
Theory to Recover the Atmospheric

Refractivity Profile

6.1 Introduction

Throughout Chapter 5 we mostly were concerned with the use of a full
spectral representation of the electromagnetic field. We are not unmindful,
however, of the potential suitability of this particular spectral technique to the
inverse problem: determining the bending angle and refractivity profiles from a
time-sequence of measurements of amplitude and phase of the received signal.
This is especially interesting when adverse signal conditions prevail, that is,
when the received signal exhibits significant amplitude and phase interference
from multiple rays. In these situations classical recovery algorithms, such as
those using the excess Doppler with the Abel transform, can run into difficulty
because of the non-uniqueness or even non-existence of the ray path. Caustic
points also lead to a breakdown in the validity of geometric optics, i.e., second
order ray theory, on which the Abel transform algorithm is based. Spectral
techniques, whether they rooted in geometric optics or in a full spectrum wave
theory, can deal with these types of propagation problems. Although multiple
rays with different bending angles can arrive at the LEO at the same time, they
can not arrive simultaneously with the same excess Doppler values when
spherical symmetry applies; those must be distinct. The transformation of the
time series of observations into a spectral series provides a means to uniquely
recover bending angle and refractivity profiles because of this one-to-one
relationship between bending angle and excess Doppler.

In this chapter we briefly outline the use of the particular full spectrum
wave theory technique developed in Chapter 5 for the inverse problem. The
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spectral density function G[ , ]ρ ν , which is the extra phase delay at the radial
position ρ  induced by the refractivity gradient on the ν th  spectral component
of the wave, plays a central role. We will not discuss in detail the computational
aspects using this particular spectral technique, nor the concomitant use of
estimation theory techniques on noisy data.

We assume that the LEO has received an ordered time series of amplitude
and phase measurements, appropriately stripped of the geometric LEO/GPS
Doppler signature and any other contributory error sources. For example, we
assume perfect orbit knowledge from POD. We assume that the effects of
oscillator variations in the various clocks affecting the phase measurements
have been eliminated through redundant differential tracking; and we assume
that ionospheric effects can be eliminated through dualband L1 and L2
tracking, possibly supplemented with modeling to eliminate third order effects.
We also assume that the SNR of the signal is sufficient so that a Nyquist
sample rate is practicable with respect to the bandwidth of the particular
atmospheric signature under study.

Although this chapter does discuss a stand-alone Fourier approach for the
inverse problem with radio occultation data, we note again that a principal
utility of radio occultation data is for meteorology and numerical weather
prediction. There the occultation data are merged in a timely way into a much
richer and broader multi-sensor data base, which is constrained by a
comprehensive model that characterizes the atmosphere and controls
atmospheric processes. This is already mentioned in Chapter 1. In this context
the difference between an actual radio occultation observation and a predicted
observation obtained by forward propagation of the GPS signal through the
atmospheric model becomes a constraint among the free parameters of the
model. The 4DVAR methodology for minimizing a quadratic cost function
involving disparate competing data bases constrained by the model is central to
accurate weather prediction [1]. In this application one usually would not
recover the refractivity profile from a radio occultation profile alone, but only
from within the 4DVAR context. Nevertheless, the stand-alone approach has
some important uses, and it is discussed in the next sections.

6.2 GPS Receiver Operations

It is helpful to understand some basic operational aspects of the GPS
receiver in measuring phase and amplitude. The BlackJack GPS receiver series
is a modern, high accuracy, dualband, digital receiver developed by JPL for
scientific applications in space. As its development has evolved over the past
several years it has successfully flown on over 1/2 dozen Earth satellites for
navigation and time keeping, precision orbit determination, geopotential
mapping, ocean reflections and limb sounding [2].
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The following is a rather high level account of this particular receiver. It
omits important details, which are crucial to the actual recovery of atmospheric
parameters, but which are less relevant to the discussion here, e.g., dual
frequency tracking to remove ionosphere effects, dealing with clock errors,
digital signal processing and correlation operations on noisy data [3,4].

In normal operations the BlackJack receiver uses a closed-loop phase
model before extracting the phase delay information to reduce the frequency of
the received RF signal from the GPS satellite to baseband, a few tens of Hertz.
First, the received RF signal (carriers in the 1.2–1.6 GHz range) is 1-bit digital
sampled in-phase and separately in-quadrature, that is, with the received RF
phase shifted by 90 deg. To facilitate the signal processing by the receiver, the
data rate of these two parallel bit streams is reduced to an intermediate
frequency (IF) of around 200 KHz. The IF frequency of these bit streams is
then further reduced to the baseband frequency using an in-receiver phase
model. This model is generated from a cubic polynomial fit to previous phase
measurements made by the receiver over the past few tens of milliseconds, and
in the closed-loop mode it is updated after each observational epoch with the
latest phase measurement [Chk w. Meehan xx].

The L1 (1575 MHz) and L2 (1226 MHz) carriers of the navigation signals
from each GPS satellite are derived from the same onboard master oscillator,
and therefore, they are initially coherent. The L1 carrier is phase-modulated
coherently with the C/A and P ranging codes. The L2 carrier is
phase-modulated only with the P-code, but coherently with the L1. These
ranging codes are pseudorandom, phase-modulating square waves that fully
suppress the carrier tone. Each transition of a code, occurring at a frequency or
chip rate of 1.023 MHz for the C/A code and at 10.23 MHz for the P code,
involves a change in phase of the carrier of either zero or 180 deg in accordance
with the pseudorandom algorithm specific to that particular code. Both carriers
also are phase-modulated with a header code operated at a 50 Hz chip rate. This
very low rate code carries the almanac and timing information for the tracked
satellite and other satellite health and housekeeping data. Each satellite
broadcasts distinctive codes that are unique to that satellite. These codes are
mutually orthogonal and they also are orthogonal between GPS satellites. In the
limit, cross-correlating two different codes yields a null result. Moreover,
because the codes are pseudorandom, their auto-correlation function is
triangular across an alignment offset of up to ±1 chip period, and its value is
zero outside of this range. This means that multiplying the same code with itself
but time-shifted also yields a null result unless the two components are aligned
within ±1 chip period, the spatial equivalent of about ±30  m for the P-code.
Therefore, cross-correlating the received signal from a specific GPS satellite
with the appropriately time and Doppler-shifted C/A and P-code replicas
effectively filters out the signals received from all other satellites and also
signals with phase delays greater than the chip period. Also, by aligning the
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codes it enables a determination of the propagation delay between that satellite
and the receiver plus any time-keeping difference between their clocks.

The baseband signal embedded in the in-phase and the quadrature bit
streams being processed by the receiver is a composite of all broadcasting GPS
satellites in view of the receiver’s antennas. Also, the sign of each bit, +1 or –1,
is dominated by the inevitable thermal or SNR noise on the original RF
sampling process. Each of these bi-level bit streams is multiplied on a bit-by-bit
basis by the time-delayed and Doppler-shifted baseband replica of the actual
signal broadcast from a specific GPS satellite. These products are then averaged
over a given time interval, i.e., they are cross-correlated. The nominal
averaging time for this cross-correlation is 20 milliseconds. The receiver can
perform this operation in parallel on the dualband L1 and L2 signals from up to
a dozen individual GPS satellites. The cross-correlation operation accomplishes
three objectives. First, the signals from all other satellites are essentially filtered
out. Second, when the time-delayed and Doppler-shifted baseband replica is
aligned with the arriving signal from that specific satellite, the effective SNR
noise on the correlation products for that satellite is averaged down. Third, the
alignment returning the maximum value of the correlation product provides the
difference of the reception epoch of the receiver clock minus the transmission
epoch of the clock onboard the GPS satellite. Synchronizing the transmitter and
receiver clocks then allows the propagation delay, or group delay, from that
satellite to the receiver to be obtained. Clock synchronization is achieved
through redundant concurrent tracking of selected GPS satellites, including the
occulted satellite, from the LEO receiver and from ground station receivers.
Concurrent tracking of multiple GPS satellites from multiple receivers allows
determination of the clock epoch differences. This cross-correlation between
the received signal and its replica from a given satellite is performed on the
in-phase bit stream and also separately on the quadrature bit stream. Thus, on
each bit stream the signal is averaged over 20,000 transition points or chip
periods of the C/A code and 200,000 chip periods of the P code. The noise error
in the average is inversely proportional to the square root of the averaging
interval.

The propagation delay between the broadcasting GPS satellite and the
receiver may be determined in two ways. The alignment of the bit streams, so
that the autocorrelation function described above from the received and replica
codes is maximized, yields the group delay plus SNR error. After the
autocorrelation function is maximized, a far more precise determination of
propagation delay is obtained from the measurement of the phase of the carrier
itself, which has a wavelength of only about 20 cm; in comparison, the
“wavelength” of the P-code is about 30 m. This propagation delay of the carrier
phase is obtained from the two time-averaged correlation coefficients, the
in-phase coefficient I and the quadrature coefficient Q. The arctangent of I
divided by Q gives a measurement of the difference in true phase minus the
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phase predicted from the in-receiver model, modulo 2π 1. If no cycles are lost
between the epochs of the current measurement and the immediate previous
measurement 20 msec earlier, adding the predicted phase from the model to the
measured phase difference gives the true phase plus the averaged-down SNR
error at that observation epoch. An important property of this scheme (adding
the predicted phase to the measured difference) is that the SNR measurement
error of the true phase at each observation epoch is statistically independent of
the SNR error at any other epoch. The root-sum-square of the in-phase and
quadrature correlation coefficients gives the amplitude of the signal. The SNR
error on the phase measurement is statistically uncorrelated with the SNR error
on the amplitude measurement. These measurements of true phase and
amplitude are then reported by the receiver at a sample rate of nominally 20 ms;
this is a convenient reporting rate because of the 50 Hz header code. Other
multiples of that canonical sample interval can be used.

This closed-loop correlation and reporting scheme for the phase works well
when the RMS difference between the predicted and measured phase is small,
substantially less than 1/4 cycle. In this case there is a very high probability that
no complete cycles, of either a positive or negative integer number, have been
unaccounted for between the two successive measurement epochs. Using
Gaussian statistics it is easy to show why this is so. Suppose that the measured
phase at a particular epoch differed from the predicted value by exactly
1/2 cycle. Then we would have no way of determining whether that
measurement was a cycle above or a cycle below the predicted value; all cycles
look alike. Regarding this measured 1/2 cycle difference, do we add it to or
subtract it from the predicted phase given by the model? Suppose that the
statistical difference between measured and predicted phase, arising from either
SNR errors or from unknown phase acceleration or from both, turns out to be
1/4 cycle, 1−σ . Then the probability of getting less than 1/2 cycle difference at

each measurement epoch, if the errors are Gaussian distributed, is Erf / /2 21 2[ ],
or 0.9545. It follows that the probability of having at least one difference that is
greater than 1/2 cycle after n successive statistically independent samples is

                                                  
1 In early versions of the Blackjack receiver, a simpler 2-quadrant arctangent routine
without complete 4-quadrant resolution was used on the I and Q correlation coefficients
to extract phase. This design choice eliminated the requirement to determine during the
signal processing the sign of the 50 Hz header code bit ±1. An error in sign affects the
sign of the I and Q correlation products the same way, and cancels in their ratio. But,
this results in a 1/2-cycle ambiguity. This exacerbates the cycle slipping problem in
noisy and/or loop-stressed conditions. Unfortunately, this arctangent operation has
resided in the digital signal processing firmware (the ASIC) of the receiver, which is
not easily modified without incurring the expense of redesigning and fabricating the
ASIC at a silicon foundry. BlackJack designers at JPL plan to incorporate a 4-quadrant
discriminator in a future version. The discussion here assumes the 4-quadrant version.
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1 0 9545− . n . After 1 s of elapsed time at a rate of 1 sample per 20 ms, n = 50 ;
therefore, for σ =1 4/  cycle, the probability of getting at least one phase
difference greater than 1/2 cycle in 50 trials is virtually certain. If at a given
measurement epoch the measured phase difference is 1/2 cycle, then there is at
least a 50% chance of choosing the wrong integer for the cumulative cycle
count. Therefore, for σ =1 4/  cycle, a non-zero integer number of cycle slips
becomes virtually certain within 1 s with a 20 ms sample interval. On the other
hand, suppose the 1−σ  value of the statistical difference between the measured
and predicted phase is 1/8 cycle. Then the probability of getting one or more
phase differences that are greater than 1/2 cycle in n successive samples is

1 4 21 2− [ ]Erf / / n
= −1 0 9968. n , still nearly zero for n = 50 . In good signal

conditions with small differences between measured and predicted phase, this
scheme (of adding the predicted phase to the measured difference modulo 2π )
usually works well.

6.2.1 Adverse Signal Conditions

The problem arises in adverse signal conditions, for example, when more
than one ray arrives concurrently at the LEO, leading to interference and to
sharp accelerations in phase across the troughs in the amplitude scintillation.
Another adverse condition is where the LEO enters a quasi-shadow zone where
no rays or at most highly defocused rays are present. Interference scenarios
have been described earlier in Figs. 5-19 to 5-34. Figure 5-34 shows a specific
example of fringe frequencies of roughly 50 Hz, 1 cycle change over 20 ms.
Reducing the refractivity gradient in this model by a factor of four to obtain
more realistic conditions, that is, that are more closely aligned with the Earth’s
atmosphere, quadruples the length of time. Thus, 1/4 cycle change occurs for
this relaxed case in 20 ms, which still a potential problem for closed-loop
operations. This level of phase acceleration is serious enough to cause with
some probability on each correlation interval at least one cycle not to be
properly added or subtracted from the integer count book-kept by the
in-receiver phase model. Over the many successive 20 ms sample intervals
spanning a few seconds this could amount to a significant number of
systematically lost cycles.

Consider the Gaussian refractivity model used in Fig. 5-20 and also the
composite Gaussian/exponential model in Fig. 5-26. For a Gaussian distribution
the impact parameter separations between rays in the multipath zone scale
roughly linearly with the 1−σ  width HW  of the distribution, but the width of

the multipath zone (in θL  or in elapsed time) scales roughly as HW
/−3 2 . The

separations between rays scale only weakly with NW , but the width of the zone
scales nearly linearly with NW . For the impact parameter diagram shown in
Fig. 5-20 the values used are NW .= 0 0001 and HW . km=1 6 , which results in
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impact parameter separations of roughly 10 km, rather large compared to
realistic scenarios. But, in Fig. 5-26 the values used in the Gaussian component
are NW .= 0 00005  and HW m= 350 , corresponding to a peak water vapor
number density of about 1% of the local dry air density. More importantly, for
Fig. 5-26 this component is superimposed on a background refracting medium
that is defocusing, an exponential profile corresponding to dry air. This
composite model leads to impact parameter separations in the multipath zone of
up to 3 km, or to excess Doppler differences of up to about 15 Hz, or 1/3 cycle
in 20 ms.

Another adverse signal situation occurs when the LEO encounters a shadow
zone with weak signal conditions followed by flaring and strong interference.
Consider a local refracting medium (e.g., a water vapor layer) embedded in an
ambient medium (e.g., dry air) that gives rise to the transient in Fig. 6-1, which
shows bending angle versus impact parameter. An abrupt increase in
refractivity below a spherical boundary could yield this form for the bending
angle profile. Here ρo o ok N r= +( )1  corresponds to sea level. No  is the

refractivity for dry air at sea level. The exponential model in Eq. (5.8-2a) is
used here for the dry air component of the refractivity with No = 0 00027.  and

the scale height Hk− =1 7 km . Below the boundary at r Hko +
−1 4/ , about 2 km

above sea level, the total refractivity abruptly increases, but then with
decreasing altitude its gradient gradually approaches the dry air gradient.
Figure 6-7 shows the recovered refractivity profile for this water vapor layer.

The impact parameter diagram shown in Fig. 6-2 results from the same
bending angle profile shown in Fig. 6-1. The values of the refractivity and orbit
parameters are the same for Figs. 6-1 through 6-7. The LEO orbit radius is
r roL
= 1 1. . This figure, expressed in terms of impact parameter altitude in

kilometers versus orbit angle, provides an example of a shadow zone (where
d dρ θ* / L ≈ 0 ) followed by caustic flaring and multipath. At r r H ko≈ + / 4  the
main ray (m) encounters a sharp increase in refractivity as its tangency point
descends below a boundary there. This causes a shadow zone. As θL  further
decreases the first caustic is encountered at θ θρL − ≈

o
2 , leading to the creation

of two more rays (a) and (b) in addition to the main ray (m). For a coplanar
geometry the Doppler difference between these new rays and the (m) ray is
6–7 Hz at the first contact point; it gradually increases as the rays separate. This

difference is given by ∆fb m *m *b
˜̇ /L− = −( )ρ ρ θ π2 , where ˜̇

Lθ  is the LEO
angular velocity in the plane of incidence. Interference continues until the (a) and (m)
rays disappear below the lower caustic point at θ θρL − ≈ −

o
7 . This scenario has

been discussed in more detail in Chapter 2 using a thin phase screen and scalar
diffraction theory. In particular, Chapter 2, Figs. 2-2c and 2-12. In the case
shown here in Fig. 6-2, the (a) and (b) rays created at the right-hand caustic
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point have phases at the LEO that differ by many cycles from the phase of the
main ray (m). Moreover, they also have substantially lower excess Doppler
frequencies. In this figure the difference is 6–7 Hz initially for a coplanar
geometry, and it grows to 15 Hz as the altitude of the (b) ray impact parameter
separates from the other two. When the occulted GPS satellite does not lie in
LEO orbit plane obliquity effects reduce this Doppler level by up to about 30%;
see Eq. (6.3-4) and Fig. 6-8.

Figure 6-3 shows the amplitude of the field at the LEO that results from
this transient in bending angle shown in Fig. 6-1. In this example the upper
caustic (right) yields strong signal flaring, but flaring from the lower caustic
(left) is more muted. The voltage SNR well into the shadow zone is about
11 dB below voltage SNR for GPS signals in a vacuum. Diffraction creates
edge fringes, but it also softens rough edges, resulting in the more gradual
decay of SNR at the beginning of the shadow boundary.

Figure 6-4 shows the phase difference between the complete field and the
field from the main ray (m) only. This figure begins near the end of the shadow
zone and includes the contact with the first caustic. For a coplanar geometry
this figure covers about 3–4 s of elapsed time. The excess Doppler for the (m)
ray becomes nearly constant at entry into the shadow zone. In fact, a ray with
nearly constant excess Doppler is a very defocused ray (see Eq. (6.3-11)). In the
lower troposphere defocusing from the dry air refractivity gradient compresses
the wider altitude differences of these impact parameters. Nevertheless, this
figure shows an abrupt change in Doppler, within a 20 to 30 msec interval,
from zero to about 7 Hz for a coplanar geometry.

Figure 6-5 shows a blow-up of the amplitude and phase of the field at the
LEO in Figs. 6-3 and 6-4 in the vicinity of θ θρL .− =

o
2 1 around a very deep

amplitude trough in the interference fringes. Here the emerging (a) and (b) rays, still
essentially coherent and at a point slightly earlier than the geometric optics prediction
of the caustic contact point, have strengthened so that their combined amplitude at the
point where their phase is opposite the phase of the (m) ray nearly matches its
amplitude. This causes a near complete cancellation of the total field and a short
burst of rapid phase acceleration. The solid dots in the figure denote measurement
epochs on 20 ms centers (for d dt˜ / mrad/ sLθ = −1 ). The lighter dots are predicted
phase values at future epochs. The SNR error bars are relative; their actual values also
depend on signal gain and processing technique. In these situations the RMS
disparity between predicted and measured phase can exceed 1/4 cycle primarily
because of the inability of the in-receiver phase model to anticipate adequately
the phase acceleration from interference between these multiple rays, and
because of poor SNR noise in the phase measurement. Reducing the sample
time to mitigate phase acceleration effects and to catch stray cycles, adversely
impacts the effective SNR of the sampled measurement, which further
exacerbates the potential disparity.
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Multipath situations like these have led the BlackJack designers to
experiment with alternate sampling and reporting schemes, such as flywheeling
the receiver. An additional technique is to use a realistic excess Doppler
algorithm combined with the receiver fractional phase measurement to connect
phase. Other open loop schemes are feasible; the receiver uses a realistic
in-receiver model and simply reports multiple time-lagged correlation
coefficients in an open-loop mode. This approach leaves it to the data analysts
to recover the various phases from the multiple rays relative to the realistic
model and also to extract their respective amplitudes.

6.2.2 Flywheeling

Flywheeling uses an extrapolation from the in-receiver phase model, set at
an earlier time where the phase was considered to be unambiguous, to predict
the phase at a future epoch, without updating the model with new information
from the most recent epoch because of its uncertainty. Both the closed-loop and
the flywheeling modes are depicted in Fig. 6-5. To simplify the sketch only a
second order loop is shown, which is indicated by the sloped straight lines. But
the receiver actually uses a third order technique to predict forward; the
extrapolation lines in this figure should be curved. In this simplest form of the
in-receiver model, the phase measurements from the previous two measurement
epochs are used to set the Doppler and the phase. In Fig. 6-5 these two points
are located at θ θρL .− =

o
2 14  and 2 16. mrad . In this figure time evolves to the

left for a setting occultation at a rate of roughly −1s/ mrad  for a coplanar
occultation. Thus, the abscissa can be read directly in seconds of time. For a
non-coplanar case the time scale would be compressed by the obliquity; for a
30 deg LEO orbit plane inclination relative to the plane of incidence, the
elapsed time interval in this figure would be 30% greater (see Fig. 6-8). In the
closed-loop mode the receiver uses the measured phase at these two earlier
epochs at θ θρL .− =

o
2 14  and 2 16.  to predict the phase at the next epoch at

θ θρL .− =
o

2 12 . Upon obtaining the new phase measurement at this later epoch

it then updates the Doppler and phase of the model to predict the phase at
θ θρL .− =

o
2 10 . In the flywheeling mode the receiver does not update the

model at θ θρL .− =
o

2 12 , and it extrapolates the model fixed at the earlier

epochs to predict the phase at θ θρL .− =
o

2 10 .

Although this example of near-complete extinction of the field may seem
pathological, it happens. The sharp phase acceleration combined with increased
SNR error in the measurement is problematical for the receiver. To show this,
redraw the phase prediction lines in Fig. 6-5, to run from the opposite ends of
the 1−σ  phase measurement error bars at θ θρL .− =

o
2 14  and 2.12 for the

closed-loop, and at 2.16 and 2.14 for the flywheeling mode. The worst case
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combination for this example runs from the upper end of the error bar for the
earlier point to the lower end of the error bar for the later point. For these
combinations the new phase predictions at θ θρL .− =

o
2 10  for both the

closed-loop and the flywheeling modes are more than 1/2 cycle different from
the actual phase at this point. Both the closed-loop and flywheeling modes have
difficulty with this example.

The receiver automatically changes to the flywheeling mode according to
certain pre-set signal conditions related to SNR and measured phase residuals,
typically around SNRV ≈ 30 , and it can revert back to closed-loop tracking
according to another set of conditions. But, as many of the figures in this
monograph suggest, tracking in either the close-loop or the flywheeling modes
can result in cycle losses. If, for example, the earlier Doppler from the still
strong and unique (m) ray is used in a flywheeling mode to carry the struggling
receiver through the later poorer SNR conditions across a shadow zone, what
happens at the contact point with the upper caustic? It depends on the strength
of that caustic. A weak caustic (see Fig. 5-21 (b)) reveals itself at the LEO as
the envelope defining the amplitude of relatively high frequency interference
fringes. There the main ray (m) is still dominant, and the frequency of the
interference fringes depends on the difference in altitudes of the impact
parameter of the (m) ray and the impact parameter of the caustic rays. The
receiver may have difficulty tracking either one of these nascent (a) and (b) rays
because of their continuing interference with the (m) ray. Figure 5-22 shows the
phase acceleration spikes that result when the rays become comparable in
amplitude.

On the other hand, in the examples given in Fig. 5-32 and in Fig. 6-3, the
extraordinary signal strength at the caustic contact is likely to induce the GPS
receiver to lock onto the phase of the field there. For strong caustics, the
nascent (a) and (b) rays, which are temporarily coherent in their early stage,
become the principal contributors to the field at the LEO. This is the case in
Fig. 6-3 at the caustic contact near θ θρL .− =

o
2 0 . Until the impact parameters

of these two nascent rays have had time to separate after the caustic contact
point, there is very little interference between them. The amplitude of the field
can be very strong at the LEO, depending on the curvature of the impact
parameter curve θ ρL vs *  at the caustic contact point (see Eq. (5.12-11)). The
width of a caustic peak for strong nascent rays can be hundreds of milliseconds,
roughly given by ∆t d d~ | / | / ˙

L L*
/3 2 2 1 3θ ρ θC . This width can be several to many

20-ms correlation intervals. For examples, see Fig. 5-32 (∆t ≈150  ms) and
Fig. 6-3 (∆t ≈ 500  ms); easy enough to be lured there by these strong and
locally stable fields. In this case the receiver reverts from the flywheeling
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mode2 to closed-loop and takes on the Doppler of the new field formed by the
composite of all the rays. In the case of Fig. 6-4, the new Doppler abruptly
(<50 ms) becomes 7 Hz less than the original Doppler for the (m) ray. The (m)
ray has not yet disappeared, but it is no longer “recognized”. One has a 7 Hz
negative bias relative to the (m) ray resulting from the receiver jumping from
one ray to the other, from (m) to (b). However, it should be noted in this
example, especially if the receiver were in fact to remain in the closed-loop
mode through this delicate transition shown in Fig. 6-5, that no cycles were
lost. The reported phase by the receiver in this case would be the measured
phase of the complete field at the LEO from all rays. The problem is with the
interpretation of the measurements resulting from the implicit adoption of a
single ray paradigm.

Probably a prudent rule of thumb declares that whenever a caustic-like
feature is encountered in the amplitude data, this probably means that it is a
strong caustic in order to stand out in noisy data. This feature then is a
harbinger for subsequent multipath and for the possibility that certain rays may
not be properly accounted for with the usual ray theory approach i.e., the Abel
transform. In fact, the mere event of the receiver converting to the flywheeling
mode, should serve as an alarm announcing multipath and that spectral
techniques may be required.

6.2.3 Refractivity Error from a Single Ray Paradigm

Figure 6-6 shows the receiver in the flywheeling mode using the excess
Doppler from the (m) ray just prior to entering the shadow zone (θ θρL − ≈

o
7 ) to

power through the shadow zone with poor SNR. Closed-loop operations resume
with return of strong signal near the first caustic contact point (θ θρL − ≈

o
2 ), a few

seconds later. The continued existence of the (m) and (a) rays after the (b) ray is
“tracked”, and their contributions to refractivity recovery, are essentially
ignored in the multipath zone with the single ray paradigm. It is straightforward
to calculate the error in recovered refractivity caused by ignoring this multipath.

                                                  
2 For the specific refractivity profile used in Figures 6-1 through 6-5, it is doubtful that
a high performance receiver like the BlackJack actually would drop out of the
closed-loop mode upon entering the shadow zone. Diffraction softens the rate of falloff
in amplitude at the shadow boundary. Also the average minimum amplitude in this
example is still 20% of the original amplitude. At θ θρL

− ≈
o

2 1.  there is a single episode

of almost complete cancellation between the (m) ray and the combined field from the
emerging (a) and (b) rays. This event could force the receiver into the flywheeling mode,
but it is somewhat irrelevant. In both modes, flywheeling or closed-loop, the resulting
error comes more from the analysis of the tracking data than from the receiver. Following a
single ray paradigm the error in the refractivity recovery would be essentially the same
regardless of mode.
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For example, one can adopt as the true refractivity model the same model used
to generate Figs. 6-1 through 6-5. This includes an exponential model for dry
air plus a localized Heaviside-like component for the water vapor layer. This
causes the multipath zone shown in Fig. 6-2 with the three rays, (m), (a) and
(b). The adopted model for recovery would be the exponential-only model,
which has no additional Heaviside-like refractivity component and it allows no
multipath. If we then extend the impact parameter curve from the (b) ray near
the caustic up to the (m) ray, as shown in Fig. 6-6, we have essentially ignored
the entire anomalous (a) ray and a segment of the (m) ray. These sections are
shown as the dashed loop in this figure. A best fit of No  and H  from the
exponential-only model to this region can be done. Comparison of the
recovered refractivity profile from this fitted model with the true refractivity
profile gives the error resulting from overlooking the dashed segments of the
(a) and (m) rays. This is shown in Fig. 6-7. Here the true refractivity profile
N( )*ρ  generates the bending angle profile shown in Fig. 6-1, but the modeled

refractivity profile ˆ ( )*N ρ  is only an exponential fit to the observations. This
shows the difference in refractivity profiles between the fitted model and the
true model. In this case the error in the refractivity is negatively biased because
the excess Doppler from the (b) ray, including its extrapolation backward, is on
average less than the combination of the (a) and (m) rays. This systematic loss
of counted cycles relative to the (m) and (a) rays is equivalent to a negative
error in the Doppler and this effectively leads in this example to a negative
error in the recovered refractivity profile. See Appendix F for a further
discussion of the error in recovered refractivity expressed in terms of an error in
excess Doppler or bending angle.

An examination of actual SNR profiles from LEO occultation observations
reveals a seemingly endless number of scintillation episodes, particularly as the
signal passes through the water vapor-laden lower troposphere or through
various layers in the ionosphere. Flywheeling does not appear to provide a
comprehensive remedy when deep scintillation occurs. It probably will be
augmented by the JPL group soon in favor of some open-loop scheme, such as
reporting correlation coefficients using a realistic Doppler model, and with
multiple time-lags between the predicted and received time series.

6.3 Spectral Representation of the Field at the LEO

With these caveats, we now assume that an appropriate signal processing
scheme has been implemented so that the amplitude and connected phase has
been recovered from the receiver, plus the unavoidable SNR noise. We start
from the spectral representation for an outgoing wave evaluated at the LEO
located at ρ θL L,( ) . For the emitting GPS satellite located at ρ θG G,( ) with
θ πG = , a fixed value, the spectral integral representation for the field is given
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from Eqs. (5.9-5) and (5.9-6), modified to account for the finite value of ρG .
We have
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where3

                                                  
3 The spectral representation for the field at the LEO when the GPS satellite is located
at a finite distance, about 4.5 Earth radii, must account for the wavefront curvature of
the incident wave. This is a spherical wave of the form eiρ ρLG

LG
/  centered at the

emitting GPS satellite (see Figure A-3). Although we did not derive this form in
Eq. (6.3-1), its extra terms compared with the collimated form given in Eqs. (5.9-5) and
(5.9-6) can easily be inferred from the difference in the asymptotic forms at large
distances out of the atmosphere for the incoming spectral coefficients a

l

− ( )ρ  for these

two cases. These are given in Eqs. (5.5-3a) for the case of a collimated or planar
incident wave and in Eq. (5.5-3b) for the case of a spherical incident wave. For the
latter, a

l

− ( )ρ  carries the extra factor i l

l

+ +1ξ ρ ρ( ) /
G G

, which is derived from the multipole

spectral expansion for a spherical wave [5] combined with the addition theorem for spherical
harmonic functions. But, for ρ ν

G
>> , we may use the asymptotic form for the spherical Hankel

function ξ ρ
l

+ ( )
G

. This factor has the asymptotic form

i il

l

+ + → − − +1 2 2 2 1 4 2 2 1 2ξ ρ ρ ρ ν ρ ν νθ
ν

( ) ( /( )) exp[ (( ) )]/ /

G G G G

G

which coincides with the extra terms in Eq. (6.3-1). Here the phase delay spectral density
function Ψ( , )+ −  is referenced to the emitting GPS satellite, whereas Ψ( , )+ −  in
Eqs. (5.9-5) and (5.9-6) for the collimated case is referenced to the line θ π= / 2 . Also,
the constant E

o
 has a different meaning from E

o
 in Eq. (5.9-5). Essentially it must

account for the 1/ ρ
LG

 space loss that the amplitude of the spherical wave emitted from

the GPS satellite incurs in traveling to the LEO. This is inconsequential in recovering
the refractivity profile because it is the variability of the amplitude and phase over an
occultation episode that contains the atmospheric information. The product
(cos cos )θ θ

ν ν

L G  in Eq. (6.3.1) is related to the reduced limb distance,

D D D D D= +
G L G L

/( ) , with D
G G

G= ρ θ
ρ

cos
*
 and D

L L

L= ρ θ
ρ

cos
*
.

The ray theory interpretation of θ
ν

L  and θ
ν

G  is as follows. Let ν ν= *  be a spectral

number at which Ψ  assumes a stationary value. When super-refracting situations are
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The spectral density function G G† †( ) [ ( ), ]ν ρ ν ν=  for the phase delay from the

refractive gradient and ρ ν†( ) are discussed more fully in Section 5.7, and their
forms are given in Eqs. (5.7-2) and (5.7-11), respectively4. They are the spectral
density forms applicable to an outgoing wave at the position of the LEO. We
have taken minor license with Eq. (5.9-5) by consolidating the radial and
transverse components into a single scalar form for the electric field E ρ θL L,( ) .
The resulting error is negligible for occultations.

We note that the spectral density for the phase, Ψ( , )+ − , is a function of
ρ ρ θ νG L L, , ,( ) . Ψ( , )+ −  is the appropriate spectral density function for a

position located well into the upper half-plane, π θ>> >>L 0 , and in the
outgoing quadrant, π α θ/ L L2 0− >> >> . Ψ( , )+ −  gives the spectral density of
the complete phase delay at the LEO position ρ θL L,( )  relative to the emitting
GPS satellite located at ρ θG G,( ) with θ πG = . It includes the geometric delay

terms and the term − 2G†( )ν  for the delay from the refractive gradient. The
geometric delay term, Dν

L , gives the delay in phase along a straight line
between the LEO and the tangency point of the line on a sphere of radius

ν ρ< L  centered at the origin. The term ν θ θνL
L−( ) is an arc length along this

sphere of radius ν  and it is subtracted from Dν
L  to correct it to the intersection

of the sphere with the line θ π= / 2 , which is the fixed reference line for
computing phase delays at the LEO. Similarly, the terms Dν ννθG G+  give the

                                                                                                                           
avoided, we know that to high accuracy ν ρ*

*
=̇ , the impact parameter of the

corresponding ray. Then from Eq. (6.3-1) and Bouguer’s law it follows that θ
ρ*

L

becomes the angle between the ray path tangent vector and the radius vector of the
LEO, χ δ

L L
+ , in Figure A-3. Similarly, θ χ δ

ρ*

G

G G
→ + . Note from Figure A-3 with

θ π
G
= , it follows that θ θ θ δ δ α

ρ ρ* *

G L

L G L L
+ − → + = .

4 Incidentally, the difference between ρ ν† ( )  and ν  is very small for a large sphere,
ro / λ >> 1. Here that spatial difference is about 7 m.
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geometric phase delay from the emitting GPS satellite along the straight line to
the tangency point on the sphere of radius ν  and thence along the sphere to the
line θ π= / 2 . For the LEO located at a given point ρ θL L,( ) , the spectral

neighborhoods around the stationary phase points ν* , that is, where
∂ ∂ν

ν
Ψ / | * = 0, provide the principal contributions to this spectral integral in

Eq. (6.3-1).
E ρ θL L,( )  is the scalar field at the LEO; the phase of E ρ θL L,( )  includes an

integer multiple of 2π  driven by the absolute phase represented by the spectral
density function Ψ( , )+ − . But, as we just discussed, it is problematic whether or
not the actual phase measurements can yield unambiguous connected phase at
all times. Nevertheless, it is important to have the correct phase change between
observation epochs, uncorrupted by systematic cycle slipping by the receiver or
by the post-measurement data editing. Occasional cycle breaks, although
undesirable, are probably inevitable. We assume here that cycle breaks have
been fixed.

6.3.1 Stopped Field at the LEO.
Let ˆ ,L LE ρ θ( )  be defined as the “stopped” or “counter-rotated” signal

received by the LEO. In this case “stopped” means that the orbital Doppler tone
between the LEO and the observed GPS satellite has been removed. Also, the
excess Doppler based on a first order model for the atmospheric refractivity
signature has been removed. Thus

ˆ , , exp ( )L L L LE E i tmρ θ ρ θ ϕ( ) = ( ) −( ) (6.3-3)

where the model phase ϕm t( )  is a known function that describes the time

history of the stopping phase. Dealing with ˆ ,L LE ρ θ( )  rather than E ρ θL L,( )
alleviates aliasing problems in finite sampling techniques and sharpens the
resolution. To get an idea of the magnitude of the variability of ϕm t( ) , we will
form the time derivative of Ψ( , )+ − , the spectral density for the phase delay at
the LEO given in Eq. (6.3-1). We evaluate Ψ  at a stationary point in spectral
number ν ρ*

*=̇  where ∂ ∂ν θ θ ννΨ / /L
†= − − =2 0dG d , and then we

differentiate it with respect to time to obtain ˙
*Ψ . This has already been

discussed in Section 5.12 for a circular LEO orbit with a coplanar geometry,
that is, with the GPS satellite located in the orbit plane of the LEO.

6.3.2 The Obliquity Factor.
However, we also should allow for the obliquity effect because in general

coplanarity does not apply. From Fig. 6-8 we have two angles defining the
angular position of the LEO, θL  and ˜

Lθ . Here θL  gives the angular position in

the LEO orbit plane, but ˜
Lθ  gives it in the propagation plane, which is defined
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by the ray from the GPS satellite located in the negative z direction5 to the
LEO. This propagation plane includes the “geocenter” (the center for the local
geoid) and defines the great circle arc AC on the unit sphere in Fig. 6-8. The
LEO orbit plane defines the great circle arc BC. The departure from coplanarity
is given by the inclination angle I of the LEO orbit plane about the x-axis in the
figure relative to the direction to the GPS satellite. The inclination angle I is
satellite position-dependent, but it is readily expressed in terms of the orbit
elements for the two satellites. The boresight-offset angle is ε . This is the
azimuthal angle about the radial axis relative to the in-orbit plane direction at
which the GPS satellite would be seen from the LEO. The spherical triangle ABC
in Fig. 6-8 gives the relationship between θL  and ˜

Lθ . We have
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This provides the relationships between θL  and ˜
Lθ , and also the obliquity factor

d d˜ /L Lθ θ  to reduce the Doppler for the effect of non-coplanarity. It follows
that

˜̇
˜

˙
L

L

L

Lθ
θ
θ

θ=










d

d
(6.3-5)

This obliquity factor is essentially constant over an occultation episode; thus,
the relationship between ˜

Lθ  and θL  is essentially linear. The obliquity factor is

shown in Fig. 6-9 as a function I. Here ˜ sin /L Lθ = ( )−1 r ro  with r roL / .=1 1,

which gives about the correct value of ˜
Lθ  during an occultation. Thus, an

inclination of 30 deg reduces the excess Doppler to about 2/3 of the coplanar
value. It is ˜

Lθ  that should be used in Bouguer’s law and in the spectral density
functions involving phase. Accordingly, we adopt the following convention in
the subsequent discussion. In any expression that involves a sensitive variable,
such as phase or angular velocity, we shall replace θL  with ˜

Lθ ; otherwise, we
leave the notation as is.

6.3.3 Doppler Variability.
                                                  
5 We assume here for calculation of the obliquity factor that the emitting GPS satellite
is located infinitely afar in the negative z-direction, θ π

G
= .
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We now estimate the variability of ϕm t( ) . For the purpose of calculating
the Doppler variability we assume circular orbits for the satellites. From
Eq. (5.12-4) it follows after this replacement of θL  with ˜

Lθ  in Bouguer’s law
that

˙ ˜̇
* * LΨ = −ρ θ (6.3-6)

where the phase Ψ Ψ* *G L L, , ˜ ,= ( )ρ ρ θ ρ , and ρ*  is the impact parameter
corresponding to a specific ray, not necessarily unique. To simplify this
calculation we assume that the emitting GPS satellite is at an infinite distance.
Its actual finite distance and orbital motion has a minor effect on our estimate
here. From Bouguer’s law in Eq. (5.6-5) for the GPS satellite at an infinite
distance we have

ρ ρ θ α ρ α α* L L L L L Lsin ˜ O= +( ) = + + [ ]o D 2 (6.3-7)

where ρ ρ θo = L Lsin ˜  and DL L L Lcos ˜= +( )ρ θ α . The quantity DL  is close to the
distance (or reduced distance) in phase units (i.e., distance × 2π λ/ ) from the
LEO to the Earth’s limb, even with a modest cosine effect from orbit
inclination angle I factored in. For the 20 cm wavelength of the GPS signal,
ρo ≈ ×2 108 at sea level and for a LEO orbit radius r roL .=1 1 , DL ≈ ×1 108 . It
follows that

˙ ˙ ˜̇ ˜̇
* L L L LΨ = − − ( )ρ θ θ αo D (6.3-8)

The first term on the RHS of Eq. (6.3-8) produces the orbital Doppler term due
to the LEO. For a typical LEO orbit ˙  mrad/ sLθ ≈1  and it is essentially constant

with time; thus, for the LEO part, ρ θ πo
˜̇ / KHzL 2 30≈  times the obliquity factor

d d˜ /L Lθ θ , which is shown in Fig. 6-9 as a function of the inclination angle I of
the LEO orbit plane.

The orbital velocity of a GPS satellite is about half the LEO velocity
because its orbit radius is about four times larger. During an occultation the
position of a GPS satellite is located about 4.5 Earth radii away from the LEO
on the far side of the Earth; so, only about a quarter of its velocity vector
projects plus or minus in the direction of the LEO. Also, the GPS satellite orbit
planes are inclined differently to the LEO orbit plane, and the limb of the Earth
as seen from the LEO is offset downward from the LEO orbit velocity direction
by roughly 25 deg. The upshot is that all of these factors combine to yield a
maximum Doppler during an occultation from both LEO and GPS orbital
kinematics of around 35 KHz.
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The second term in Eq. (6.3-8) is the excess Doppler from the bending
angle  αL  caused by the atmospheric refractivity;  here

D d dL L L L
˜̇ / ˜ / Hz/ mradθ π θ θ2 ≈ ( )15 . Dry air yields a bending angle for a ray

path tangency point at sea level of about 20 mrad; so, this component reaches
about 300 Hz. But, bending angles through water vapor in the lower
troposphere can exceed twice this level. The water vapor contribution is largely
unknown a priori, but it can be characterized statistically by latitude and
season. Excess Doppler signatures typically range over several hundred Hz.

What about the variability of these Doppler frequencies? Let us assume that
the LEO is in a circular orbit. Then from Eq. (6.3-6) it follows that

˙̇ ˙ ˙ ˜̇
* * LΨ = −ρ θ (6.3-9)

The term ρ θ ρ θ* *
˜̇̇ ˙ ˜̇

L L<<  and it is ignored here. The acceleration contribution
from the GPS satellite will be small over the relatively short time intervals of
interest here. Upon differentiating ρ*  from Bouguer’s law in Eq. (6.3-7), it
follows that

˙ ˜̇
* L L Lρ θ ζ= D (6.3-10)

where ζ α ρL L L / *= −( )−1 1D d d  is the defocusing factor. It follows that the
acceleration in the phase term is given by

˙̇ ˙ ˜̇
* L L LΨ = −D θ ζ2 (6.3-11)

Similarly, it follows that the acceleration from the orbital motion of the LEO is
given by

d D

dt
D

2

2
2L

L L
˙ ˜̇= θ (6.3-12)

Subtracting Eq. (6.3-12) from Eq. (6.3-11) gives the acceleration in excess
phase
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It follows for strong defocusing that the excess Doppler rate approaches a
constant value with time, 10-15 Hz/ s , depending on the obliquity of the orbit
and propagation planes. (Therefore, the bending angle rate of a given ray in
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strong defocusing conditions will approach a constant, d dtαL / ~  mrad/ s→ 1 ,

or equivalently, d dα θL L/ ˜ ~→ 1)
Over the course of a few tens of seconds that we will be interested in

recovering the refractivity profile under adverse signal conditions, how well can
we fit the stopping phase with a simple linear polynomial in time ϕ ωm mt t( ) = ?
Eq. (6.3-13) suggests that in strong defocusing this linear form should be good.
We set ωm = ˙

*Ψ . Then ˙ ˙ ( ) ˙̇
*Ψ Ψ− ≈ϕm t t . From Eq. (6.3-11) it follows that

˙̇ / ~ Hz/ s*Ψ 2 2π <  in the lower troposphere where the defocusing factor from
dry air has a value around 1/10. The defocusing in the lower troposphere causes
the impact parameter separations between multipath rays to be proportionately
compressed, thereby reducing their Doppler differences by a factor of about 10.
Thus, for a 10s single-sided sample interval we can use a linear term in time to
stop the Doppler in the signal with a frequency run-off of a few tens of Hz.
Sampling the signal at a 50 Hz rate usually should satisfy the Nyquist criterion
for this sample interval. At the altitude of the sporadic E layer the ambient
value of the defocusing factor is essentially unity; we would need a narrower
sample interval there.

The last question concerns the spread in Doppler tones from different
multipath rays. We already have seen that the spread in altitudes of the
tangency points typically is less than 5 km. Thus, the maximum spread in

Doppler is less than D k DL L L
˙ / / Hzθ π2 5( )( ) ≈ 25 ; the bandwidth of most

interference spectra is less than 10 Hz. A sample rate of 50 Hz should suffice.
Incidentally, Eq. (6.3-10), which gives the velocity of the impact parameter

of a ray, shows the retardation caused by the defocusing factor ζL . In the lower
troposphere the dry air component of the defocusing systematically compresses
the altitude separation between multipath rays and narrows the maximum
bandwidth of the interference spectrum, see Eq. (5.12-18).

6.4 Refractivity Recovery

Let us apply a discrete Fourier transform to the stopped LEO observations
given in Eq. (6.3-3) and to the spectral representation for the stopped wave
given in Eq. (6.3-1). For the latter we have
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Here ˜ ˜
L Lθ θo ot= ( )  is the LEO orbit angle at the center of the data interval

measured in the plane of incidence, see Fig. 6-8. Eq. (6.3-4) provides the
relationship between ˜

Lθ  and θL . T  is the total time span covered by the
observations and M +1 is the total number (odd) of samples; for example,
M T= 50  for a 50-Hz sample rate. Using the spectral representation in
Eq. (6.3-1) for ˜ ,L LE ρ θ( )  and ϕ ωm m ot t t( ) = −( )  for the stopping phase, we
have from Eq. (6.4-1)
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Now we replace the discrete Fourier transform with the integral transform using
the fact that
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Here δ ( )u  is the Dirac delta function. Setting u = π  defines the Nyquist limit,
| | /ω π≤ M T . Upon replacing the discrete “delta function” in Eq. (6.4-2) with
the Dirac delta function, it follows that the Fourier transform of ˜ ,L LE ρ θ( ) is
given by
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For a finite sample interval the discrete Fourier transform yields the discrete
delta function, which has the Sin SinNx x/  character shown in Eq. (6.4-3), and
the actual time series would have additive noise. The granularity threshold from
the discrete transform can be obtained from the first zero of the discrete delta
function in Eq. (6.4-3), which occurs at u M= +2 1π / ( ). This is equivalent to
∆ω π= 2 / T , which is essentially the uncertainty inequality for a discrete
process. In impact parameter space this relationship maps into a granularity in

altitude of λ ρ π λθ ω π∆ ∆* / ˜̇ /L2 21= −  = ( ) ≈λ θ/ ˜̇ / mLT T200 , or about 20 m for
T =10s. Instead of a Fourier transform, one could use any one of several other
transform schemes, such as the Morlet wavelet transform, which treats the time
series as a spectral composition of wave packets. The subsequent equations will
differ and their efficiencies in recovering the refractivity profile might vary, but
recovery should still be feasible. For the purpose of outlining this particular
spectral approach for recovering the refractivity profile, we avoid further
discussion of these important computational and related stochastic issues.

Note in Eq. (6.4-4) that ωm ~ rad/ s2 105× , or 30-35 KHz. On the other hand,
ω πν / 2  varies over only a few tens of Hertz within the time interval for which
the Fourier transform is applied. We have used the slowly varying character of
˜ Lθν  and ˜ Gθν  to simplify the spectral expressions given in Eq. (6.4-4). Over the

bandwidth spanned by ων , ˜ ˜L Gθ θν ν+  changes by less than 0.1%. Thus, we may

set ˜ ˜ ˜ ˙ ˜L G
L L Lθ θ θ α θν ν+ = + =o o o  in the slowly varying terms (but not in ΨLo ). The

error here is roughly 1% or smaller, the ratio α θL L/ ˜t tk k( ) ( ) . The Fourier
transform in Eq. (6.4-4) further simplifies to
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Ψ (6.4–5)

We now take the Fourier transform over the occultation sequences of
stopped phase and amplitude measurements made by the LEO given in
Eq. (6.3-3). The temporal breadth of this sequence T  would depend on one’s
goals for refractivity recovery. We equate these two Fourier transforms. The
LHS on the upper line of Eq. (6.4-5) becomes the Fourier transform of the
sampled amplitude and stopped phase of the field measured by the LEO; the
RHS is from wave theory.

We note the one-to-one correspondence between ων  or excess Doppler and

the spectral number ν  in wave theory, or the impact parameter in ray optics,
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which holds when spherical symmetry applies. Also, we note that the bending
angle may not be a unique function of time (or ˜

Lθ ), but it is a unique function
of excess Doppler, and when spherical symmetry holds it is a unique function
of impact parameter through Bouguer’s law. The impact parameter diagrams in
Figs. 5-20, 5-26, 5-28, 5-31 and 6-2 all show implicitly this uniqueness
property of the bending angle versus impact parameter when spherical
symmetry holds. See also Eqs. (6.3-6) and (6.3-8), which apply to a circular
LEO orbit. We have converted through a Fourier transform the time-series of
phase and amplitude measurements of the field, in which the bending angle
may not be unique, into a spectral series in which the bending angle is unique
(when spherical symmetry applies). It follows that we should be able to
unambiguously determine the bending angle profile versus excess Doppler
from the Fourier transform ˆ[ ]E ω , given, of course, the limitations imposed by
measurement errors.

Returning to Eq. (6.4-5), the LHS is the Fourier transform ˆ[ ]E ω  from the
observations. It is a known quantity. The RHS is from wave theory; it also
contains quantities that are known a priori or from POD information, except for

G G† †( ) ( ),ν ρ ν ν= [ ]. Forcing equality between these two Fourier transforms

forces the phase of ˆ[ ]E ω  to equal ΨLo . Therefore, we can determine values for

G†( )ν  from Eq. (6.4-5) over the Fourier bandwidth spanned by ω .
However, a more suitable platform for extracting values for log n  is

dG d†( ) /ν ν . Recalling that g ŷ†( ) = 0 , it follows from Eq. (6.3-2) that

dG

d
K

d n

d
y y d

†

˙
log

Ai[ ˆ] Bi[ ˆ]
†ν

π
ρ

ρν ρω
= − +( )∞

∫ 2 2 (6.4-6)

Let us now differentiate the Fourier transforms in Eq. (6.4-5) with respect to ω .

Noting that d dω ν θν / ˜̇
L= , we obtain

d E

d
i

dG
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log ˆ

˜ ˜ ˜̇
L L

†ω

ω
θ θ

ν
θν

ν
ν

[ ]
= − −






 −2 1 (6.4–7)

However, from Eq. (6.4-1) it follows that

d

d
E i tE t i t dt

ω
ω ρ θ ωˆ[ ] ˆ , ( ) exp( ) = ( ) ( )

−∞

∞

∫ L L (6.4–8)

No explicit differentiation of the observed phase and amplitude with respect to
time is required to obtain the derivative of ˆ[ ]E ω  with respect to ω . In
Eq. (6.4-6) we note that ∂ ∂ ρ ν ∂ν ∂ρ( [ , ] / ) /G ≠ 0  at ρ ρ ν= †( )  (whereas
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∂ ρ ν ∂ρG[ , ] / = 0). It follows that Eq. (6.4-6) provides a stable means for
determining the profile for d n dlog / ρ  from the determination of

dG dρ ν ν ν†( ), /[ ] .
Let the Fourier observation function F[ ]ω  be defined by

˜̇ ˜̇ log ˆ
˜ ˜

L L Lθ ω θ
ω

ω
θ θν

ν

ν
νω

F i
d E

d o[ ] = [ ]
+ −( ) (6.4–9)

F ων[ ] is a determined spectral quantity from the measurements and the POD
information. From Eqs. (6.4-6)-(6.4-11) it follows that
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Eq. (6.4-10) is in effect a linear system, an integral equation from which the
profile d n dlog / ρ  may be recovered from a spectral sequence of known values
for F[ ]ω  based on the spectral derivative of the Fourier transform of the
observations. Recalling Eqs. (5.4-3) and (3.8-7), the negative argument
asymptotic forms for the Airy functions are Ai[ ˆ] Bi[ ˆ] ( ˆ) /y y y2 2 1 1 2+ → −− −π

with ˆ ˙ /y K= −( )−
ν ν ρ4 2 2 4 . Eq. (6.4-10) becomes
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It follows from Eqs. (6.4-10) and (6.4-11) that

α ν ω θ ω ω θ νν νL L L( ) ˜̇ ,   ˜̇↔ [ ] = + }F m (6.4–12)

To the extent to which the asymptotic forms for the Airy functions are
applicable, F ων[ ] is proportional to the bending angle for an impact parameter

value of ν . It follows for a setting occultation ˜̇
Lθ <( )0  that if

α ν νL ( ) ,  → →∞0  then F ω ων ν[ ]→ → −∞0,  .
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More generally, setting ν ρ= * , corresponding to a value of

ω ω ρ θν = −m * | ˜̇ |L  within the Fourier bandwidth, one can form
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The second integral on the third line involving the Airy functions is completely
deterministic. The fourth line is obtained from integrating by parts. The
weighting function W( , )*ρ ρ  is given by
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In the limit as λ → 0 , W( , )*ρ ρ  resembles a Dirac delta function, having
similar properties. W( , )*ρ ρ  and its integral, which rapidly approaches unity
with increasing ρ ρ> *, are shown in Fig. 6-10. The decay profile of W( , )*ρ ρ
is determined by the span in ŷ-space over which the Airy functions make their
t r a n s i t i o n  t o  n e g a t i v e  a r g u m e n t  a s y m p t o t i c  f o r m s ,
~ ( / ) m

*
* *

/2 2 4 301 2 2 1 3k K n r− = ≈ρ λ π  . Therefore, W( , )*ρ ρ  strongly weights

the contribution from log ( )n ρ  in the convolution integral in Eq. (6.4-13) at
ρ ρ= * , and it attenuates rapidly for ρ ρ> * to nearly zero within 30 m. The

half-area point is at 7 m. This spatial interval, ~ ( / )* *
/2 42 2 1 3λ πn r , is where the
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differences between wave theory and ray theory mainly arise. If we
approximate W( , )*ρ ρ  by a Dirac delta function we have

1
2 2π

θ ω

ν ρ
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∫ ∫ (6.4-15)

Eq.(6.4-15) is the wave theory equivalent of the Abel integral transform.
The Abel transform owes its existence to a remarkable property of the integral

2
2 2 2 2

xdx

x a b xa

b

( )( )− −
=∫ π (6.4-16)

for all real values of a  and b a> . Unfortunately, there does not seem to be the
crisp equivalent of the Abel transform in wave theory. From Eq. (6.4-13) and
upon setting the Airy functions to their negative argument asymptotic forms,
Ai[ ˆ] Bi[ ˆ] ( ˆ) /y y y2 2 1 1 2+ → −− −π , we have
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By solving the convolution integral in Eq. (6.4-15) the refractivity profile is
recovered from an integral operation on the spectral quantity F ων[ ], which is

related directly to the spectral derivative of the Fourier transform of the stopped
observations ˆ , ( )L LE tρ θ( )  through Eqs. (6.3-3) and (6.4-9), and which is
essentially proportional to the bending angle associated with an impact
parameter value ν .

The time span T  used in the Fourier treatment just described has not been
specified. When the SNR permits, one can partition the entire data set into a
time-ordered series of contiguous subsets or data packets of temporal width
∆Tk . Over each packet a Fourier transform can be applied, and the spectrum for
each of these strips can be assembled contiguously and displayed as a function
of time, or as a function of nominal ray path tangency altitude, and so on.
Figure 2-3, which is from [6], shows an example of this approach. This is one
example of the so-called sliding spectrum technique [7].

6.4.1 Super-Refractivity

The integral for 2dG d†( ) /ν ν  in terms of the refractivity gradient in
Eq. (6.4-6) requires special treatment to handle super-refractivity conditions.
We have used ρ = knr  as the integration variable for convenience, but implicit
in its use is the assumption that d drρ /  is positive throughout. Within a
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super-refracting medium the ray curvature index, β = − ′n r n/ , is greater than
unity. For a super-refracting spherical layer the radius of curvature of the ray is
less than the radius of curvature of the refracting surface. Super-refractivity
occurs when d dr nkρ β/ ( )= − ≤1 0 . The region where d drρ / < 0  should be
evident from the data, and the critical value of dn dr/  at the boundary is
known, dn dr n r/ /= −  ≈ − × − −157 10 6 1 km . Figure 6-11 shows a profile for a
hypothetical refractivity gradient in the vicinity of a super-refracting layer. It
could correspond to a narrow marine layer in the lower troposphere. Over the
range r r rd u≤ ≤  the profile is super-refracting.

Figure 6-12 is a schematic showing the ray geometry for a super-refracting
spherical layer with an upper boundary at r ru=  and a lower boundary at r rd= .
Such layers are called ducts in ground-based radio transmission, and the word
“ducting” is often used instead of “super-refracting”. Two critical rays are
shown in this figure. The upper critical ray just grazes the top of the
super-refracting layer; it has an impact parameter value of n r ru u( ) . The lower

critical ray has a tangency point at r rc
* =  and an impact parameter value of

n r rc c( ) ; it manages to escape from the top of the layer just before its ray path
would have been turned inward by the strong refractive gradient in the layer.
This lower critical ray escapes tangentially to the surface at r ru= . It follows
from Bouguer’s law that the impact parameter for this critical ray is

n r r n r rc c
u u

( ) = ( ) . Thus, in geometric optics we have a discontinuity in the
bending angle profile versus impact parameter at this critical impact parameter
value ρ* = ( )kn r ru u. Two rays, one just grazing the top of the layer with r ru* = ,

and the other at the lower critical tangency point r rc
* = , both have the same

impact parameter value but different bending angles. A ray with its turning
point radius in the range r r rc

u< <*  can not escape; for a ray to exist the
turning point radius r* must either equal or exceed r ru= , or it must be equal to

or less than rc .
Figure 6-13 shows an impact parameter curve ρ* * *( )= kn r r  versus turning

point radius r* in the vicinity of a super-refracting layer. Note that ρ ρu d< . A

hypothetical ray with its tangency point in the range r r rc
u< <*  would have an

impact parameter value in the range ρ ρ ρu d< <* . But from Fig. 6-13 we see
that in traveling along such a ray in the range r r ru* ≤ ≤ , one would eventually
come to a point on the ray in the super-refracting layer past which ρ ρ( ) *r < ,
which is not allowed in geometric optics for a spherical geometry. See
Appendix A, Eq. (A-4b). A necessary condition for the existence of a real ray between
specified endpoints is that ρ ρ≥ * at all points along the ray. It is no good for ρ ρ≥ * to
hold part of the way; it must hold all the way between end points, or else the
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term ρ ρ2 2 1 2
−( )*

/
 in the bending angle and phase delay equations becomes

imaginary at some point.
Figure 6-13 shows that the value of rc  relative to rd  depends on the

difference ρ ρd u−  and on the average slope of d drρ /  below the
super-refracting layer. A first approximation is given by

r r r rc
d u d

SR
c≈ − −( )
−

−

β
β

1

1
(6.4-18)

where β c <1 is the average value of β  below the lower boundary of the

super-refracting layer in the vicinity of r rc= , and βSR >1 is the average value

of β  in the super-refracting layer. If β c  is near unity, that is, nearly

super-refracting, then the difference r rd
c−  can be much larger than the

thickness of the super-refracting layer itself.
For geometric optics, then, the refractivity profile in the range r r rc

u< <  is
terra incognito. Moreover, geometric optics already begins to fail6 before
reaching these critical tangency point limits at r rc

* =  and r ru* = .
No such restriction applies in wave theory, but a super-refracting layer does

complicate matters. The point where d drρ / = 0  marks the boundary of a
super-refractive layer, which necessitates breaking the integral in Eq. (6.4-6) for
2dG d†( ) /ν ν  into three sections, one section above the upper boundary at
ρu u ukn r r= ( ) , one below the lower boundary at ρd d dkn r r= ( ) , and one through

the layer where d drρ / < 07. Alternatively, one can write the integral in a less
convenient form in terms of the radial coordinate itself. The end point of the

                                                  
6 For a geometric optics version of a super-refractive boundary caused by a 5%
discontinuity in refractivity, see Figures 2-2 (b) and 2-8 (a). The predicted amplitude is
exactly zero in the shadow zone. Figure 2-12 shows the scalar diffraction version.
Figures 3-24 and 3-25 show the Mie scattering version.
7 Recall in Section 5.7, Eq. (5.7-27), that for a fixed spectral number ν  we have set
∂ ρ ν ∂ρG[ , ] / = 0  for ρ ρ ν

ρ
≤ = −† †ŷ K . This is an approximation that exploits the

near-equality of 2dG d[ ( ), ] /†ρ ν ν ν  and α ν
L
( )  in a medium with a moderate refractive

gradient (see Appendix J). The error is small, but it depends on the curvature of the
actual refractivity profile in the immediate vicinity of this turning point where the phase
of the incoming wave is rapidly becoming stationary for decreasing ρ ν< . See

Figure 5-7 for the exact phase profile ∂ϑ ∂ρ
l

− /  in an Airy layer compared to

∂ ρ ν ∂ρG[ , ] / . In a super-refractivity zone where ρ ν ρ
u d
< < , we need the integral for

2 2dG d dG d† †( ) / [ ( ), ] /ν ν ρ ν ν ν=  only for those sections where ρ ρ ν≥ † ( ) . Hence the
three sections.
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integral becomes a function of ρ ν† †( ) / kn r( ) . This has three roots for r†  when
ν  lies within the range ρ ν ρu d< < , one above, r ru> , one below, r rd< , and
one within the super-refractive layer, r r rd u< < .

Let us define the index of refraction profile according to regime,

n r

n r r r

n r r r r

n r r r

d

d u
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( ),  ,
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≤ ≤
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(6.4-19)

Figure 6-14 is a sketch for n( )ρ  in the super-refracting zone. We have the
continuity constraints n r n r n r n rd d u u1 2 2 3( ) = ( ) ( ) = ( ),  . If we now apply the

wave theory version of the Abel transform in Eq. (6.4-15) to the Fourier
observation function F ων[ ], we obtain
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If we replace W( , )*ρ ρ  by the Dirac delta function, Eq. (6.4-20) becomes
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For spectral numbers lying in the region ρ ν ρu d≤ ≤ , only the combination
N N N1 2 3( ) ( ) ( )* * *ρ ρ ρ− +  is recoverable with this approach.
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6.4.2 Improving the Accuracy of G†( )ν

One can refine the approximation in Eq. (5.7-27) for G†( )ν  by forcing
G[ , ]ρ ν  to align with the exact form for the phase delay in an Airy layer. Per

the discussion concerning Eqs. (5.7-24) and (5.7-25), ϑ ρl
− ( )  gives the phase

delay of the l th  spectral coefficient al
− ( )ρ  for an incoming wave in an Airy

layer. One aligns G[ , ]ρ ν  with ϑ ρl
− ( )  at a radial distance ρ  where G[ , ]ρ ν  is

still accurate. The form for ϑ ρl
− ( )  is given by

ϑ ρl
y

y

y

y
− − −= 






 −







 +( ) tan

Bi[ ˜]
Ai[ ˜]

tan
Bi[ ˆ]
Ai[ ˆ]

constant1 1m (6.4-22)

where ỹ  is defined in Eq. (5.7-18) for an Airy layer, and ˜ / ˆ | | /y y = − −1 2 3β . The
top sign in Eq. (6.4-22) applies to a super-refracting medium where β >1; the
bottom sign applies when β <1. One can readily show that the asymptotic

forms for ϑ ρl
− ( )  and G[ , ]ρ ν  for negative values of ŷ  are identical in an Airy

layer. See Fig. 5-7. For decreasing ρ ν< , note that ϑ ρ ϑl l
− −−( ) ( )0  rapidly

approaches zero.
From Eq. (6.4-22) we have
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To align ∂ ρ ν ∂νG[ , ] /  with ∂ϑ ∂νl
− /  in the vicinity of ρ ν=  one sets

∂ ρ ν ∂νG[ , ] /  according to the following schedule
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(6.4-24)

The chosen value of ŷ◊  is a compromise, taking into account on one hand the

impending failure of g y( ˆ)  to provide the correct phase delay for al
− ( )ρ  for

increasing ŷ  near zero, and on the other hand the decreasing accuracy of the
Airy layer approximation to the actual refractivity profile if applied over too

wide an altitude range. Eq. (6.4-23) shows that ∂ ϑ ρ ϑ ∂νl l
− −−( )( ) ( ) /0  also

rapidly approaches zero for decreasing ρ ν< . Thus, we are concerned about the
Airy layer approximation over a relatively narrow altitude range. The Airy
layer approximation should be valid over the altitude range
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~ ˆ− ≤ − ≤ −2K y Kν νρ ν ◊ , about 50 m. Here we have set ŷ◊ = −2 . With this
modified form the derivative of the spectral density function becomes
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The weighting function W( , )*ρ ρ  also is slightly modified. In this regard, note
that the corrective term from the Airy layer in Eq. (6.4-25) approaches zero as
β  approaches zero with increasing impact parameter.

The difference in the two forms for dG d† / ν  in Eqs. (6.4-2) and (6.4-25) is
given by
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To the extent that the Airy layer approximation is valid, this form gives the
error in Eq. (6.4-2) for dG d† / ν . For β = 0 5. , this difference is about 0.1 mrad
at ŷ◊ = −2 ; for β = 2 , it is about 0.2 mrad. The error increases as β →1. The
Airy layer analysis in Section 5.7 fails at β =1, exactly.

With this modification one still ends up with an integration interval over ρ
that is effectively truncated from below at ρ ν ν= − ŷ K◊  instead of at

ρ ν ν= − ˆ†y K . A super-refractivity zone still yields three separate integration

sections for dG d†( ) /ν ν  when the spectral number lies in the super-refractivity
zone kn r r kn r ru u d d( ) < < ( )ν ; one section above r ru= , one below r ru=  down

to r rd= , and one below r rd=  down to the turning point. See also the
discussion in Section 5.8 on comparison of the wave equation solutions in a
super-refracting medium.
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6.4.3 Resolution Issues

One could infer from Eq. (6.4-15) that away from a super-refracting region
the resolution with which n( )ρ  may be recovered is limited only by the SNR
measurement errors present in the Fourier transform quantity F[ ]ω . But there
are a number of implicit assumptions embedded in Eq. (6.4-15), not the least of
which are the assumptions of spherical symmetry and error-free ionosphere
effects. These and other resolution-limiting factors have been discussed in
[8, 9]. Departures from spherical symmetry arise in two forms: a first part,
largely deterministic, is due to departures of the geopotential of the Earth from
spherical symmetry, the oblateness being the principal term. The
latitude-dependent Earth flattening term is factored into the spectral formulation
presented here by a small adjustment to the value of ro  and to the satellite
coordinates. The second part is due to imperfect a priori knowledge of the
topography of any given surface of constant refractivity. Along-track water
vapor variability, for example. Another contributor is the geostrophic effect
from winds aloft on a surface of constant pressure. Ad hoc calibrations could be
used to correct for these usually small effects for each occultation, using some
local model from ECMWF, for example; not an impossible task, but surely a
tedious one. In a thin phase screen model these adjustments are equivalent to
adjusting D, the limb distance, by an amount δD. It can be shown [8, 9] that an
uncertainty or error δD in the adopted value of D degrades the resolution ∆h ,
in the screen and that δ ( ) /∆h oF  is at least as large as 0 45 1 2. ( / ) /δD D , where
Fo  is the vertical diameter of the free space first Fresnel zone, about 1.5 km.
Thus, a 1% error in D maps into a limiting vertical resolution that is about 5%
of Fo ; a 4% error maps into about 10%, and so on. With respect to the local

Fresnel limit these percentages would be greater by the factor ζ −1 2/  because of
defocusing. In other words, the limiting resolution is quite sensitive to this type
of error.

Similar conclusions follow for other resolution-limiting factors. The
horizontal resolution is limited by the vertical resolution (see Eq. (2.2-10)). But
the vertical resolution is limited in effect by the horizontal resolution, as just
discussed. Equating these two expressions containing δD yields

δ
ζ
β

D ≈
−







90

1 2

1

3

( )
 km (6.4-27)

This gives a minimum horizontal resolution of about 50 km where the
defocusing is 1/10 and β = 0 2. , and about 100 km where the defocusing is 1.
This limiting horizontal resolution yields a limiting vertical resolution that is
15–20% of the local Fresnel diameter. That the Fresnel limit on vertical
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resolution can be substantially surpassed using scalar diffraction theory
techniques (30–100 m) has already been demonstrated [8, 10–12], but a
realistic limit is yet to be established.

Another consideration is the cross-track and along-track drifts of the
tangency point during its descent or ascent. The velocity vector of the tangency
point of an occultation is rarely exactly vertical in the upper atmosphere; it is
canted off-vertical depending on the orbit geometry of the satellites. The
cross-track velocity of the tangency point is proportional to the tangent of this
off-vertical angle. Moreover, the vertical component of the tangency point
velocity vector slows because of defocusing. But, the cross-track component of
the drift is not appreciably slowed and the along-track component accelerates
with depth, approaching the rate −ρ θ*

˜ /d dtL  in strong defocusing. These
factors result in a progressively more shallow descent ratio with depth for the
tangency point. In other words, the horizontal displacement of the tangency
point during an occultation is a significant factor in resolution questions. Of
course, in a 4DVAR context these resolution issues should be addressed in
terms of the information content already extant in the 4DVAR system.

6.5 Summary

This section outlines one spectral technique based on wave theory for
recovering the refractivity profile N( )ρ  from the spectral derivative of the
Fourier transform of the received amplitude and stopped phase measurements
made by the LEO over time. Coincidentally the bending angle profile α νL ( )  is
recovered. Spectral techniques in general facilitate recovery of bending angles
and refractivity fundamentally because of their ability to uniquely sort received
rays according to their excess Doppler, or impact parameter values in a
spherical symmetric medium. Spectral techniques seem essential when adverse
signal conditions prevail because of the concurrent reception of multiple rays.
Spectral techniques also are efficacious, but perhaps not essential if a third
order ray theory is used, in near-caustic situations where the validity of second
order geometric optics breaks down.

Because of the close correspondence noted in Table 5-1 between the phase
delay spectral density function 2G†( )ν  evaluated at its stationary value in
spectral number and the scalar diffraction/thin screen phase function ϕ ρ( )*

discussed in Chapter 2, one need not start from wave theory as the framework
for obtaining these spectral results. We noted in Section 5.10 that the phase
delay spectral density function G†( )ν  from wave theory and the thin screen
phase function ϕ( )h  are related by

− = = ⇔
∞ ∞

∫ ∫2 2G d d†( ) ˙ ˜ ( , ) ( ) ( )Lν α ν ν ν α ν ν ϕ ν
ν ν

(6.5-1)
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The analog of ΨLo  in the thin screen is Φ h h, LG( ) , the Fresnel phase function

given in Eq. (2.5-1). It follows that essentially the same form given in
Eq. (6.4-5) would come from the scalar diffraction integral in a thin phase
screen model, provide that the screen is so constructed that there is a one-to-one
relationship between h and the impact parameter. Therefore, the wave-theoretic
Fourier approach followed here in Chapter 6 to recover the refractivity profile
can be converted into a thin screen Fourier approach by replacing −2G†( )ν  by
ϕ ρ( )*  and its derivative 2dG d†( ) /ν ν  by −d dϕ ρ ρ( ) /* *, that is, by α ρL ( )* .
One also can start from a thin phase screen model, whose surface is defined by
the impact parameter, and use scalar diffraction theory to obtain essentially the
same results. This offers an easier approach.

Finally, an intriguing prospect for future in-receiver signal processing
operations in support of limb sounding, is the incorporation of advanced
processing techniques, such as essentially real-time Fourier transform
algorithms. With current POD information a smart receiver not only could
power through adverse signal episodes and perform backward reconstruction, it
also could report bending angles for multiple rays and refractivity profiles
directly, along with essential statistics, basic phase and amplitude data, and
other housekeeping information.

One should not underestimate the potential cost savings of an in-receiver
automated system using the GPS, especially in adverse signal conditions. For
an analogy one need look no further than the navigation of a typical LEO with
an on-board GPS receiver. Here one can find highly automated processes
resulting in centimeter-level orbit accuracy. Once operational, the workforce
required to routinely maintain and use this capability is an order of magnitude
smaller than that required for most ground-based tracking systems [13].
Investment now in the necessary R&D to enable future automated in-receiver
operations for GPS-based limb-sounding would seem to be a wise
programmatic option. In the future other GNSS programs besides the GPS will
become operational. Use of these systems also should be incorporated in future
flight receiver designs.
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Figure 6-1.  Hypothetical bending angle at the LEO for a layer of
higher refractivity embedded in dry air near sea level. Figure 6-7
shows the recovered refractivity profile for this water vapor layer.

Figure 6-2.  Impact parameter diagram for the refractive bending
angle profile shown in Figure 6-1.

Figure 6-3.  Amplitude of the field at the LEO from the bending angle
profile given in Figure 6-1.

Figure 6-4.  Phase of the complete field at the LEO minus the phase of
the main ray (m) resulting from the Figure 6-1 bending angle profile.

Figure 6-5.  Blow-up of Figures 6-3 and 6-4 at θ θρL
− ≈

o
2 1. , showing

the burst of phase acceleration at θ θρL
− =

o
2 12.  resulting from near-

complete cancellation of the field by opposing caustic rays.

Figure 6-6.  Multipath with single ray paradigm.

Figure 6-7.  Error in recovered refractivity ˆ ( )*N ρ  as a result of
ignoring the dashed sections of the (m) and (a) rays in Figure 6-6.

Figure 6-8.  Spherical geometry for non-coplanar LEO and GPS orbits.
GPS satellite located infinitely afar along the negative z-axis.

Figure 6-9.  Obliquity factor d d˜ /θ θ
L L

 and I / ε  versus LEO orbit plane
inclination angle I.

Figure 6-10.  Weighting function W( , )*ρ ρ  in the wave theory analog of
the Abel transform.

Figure 6-11.  Gradient of n r( )near a super-refracting medium.

Figure 6-12.  Ray geometry for a super-refracting spherical layer.

Figure 6-13(L).  Impact parameter curve in a super-refracting zone.
Figure 6-14(R).  Profile for n  versus ρ  in a super-refracting zone.
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Figure 6-12.

Figure 6-13(L). Figure 6-14(R).
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